ON RECONSTRUCTING SEPARABLE REDUCED p-GROUPS WITH A GIVEN SOCLE *

BY

SAHARON SHELAH

The Hebrew University of Jerusalem, Jerusalem, Israel; and Simon Fraser University, Burnaby, British Columbia, Canada

ABSTRACT

Let \hat{B}^* be a separable reduced (abelian) p-group which is torsion complete. We ask whether for $G \subseteq_{pr} \bar{B}^*$ there is $H \subseteq_{pr} \bar{B}^*$, $H[p] = G[p]$, *H* not isomorphic to G . If G is the sum of cyclic groups or is torsion complete, the answer is easily no. For other G , we prove that the answer is yes assuming $G.C.H.$ Even without G.C.H. the answer is yes if the density character of G is equal to $\text{Min}_{n<\omega}$ | p^nG |, i.e.,

$$
\underset{n<\omega}{\text{Min}}\mid p^nG\mid=\underset{m}{\text{Min}}\sum_{n>m}\mid (p^nG)[p]/(p^{n+1}G)[p].
$$

Of course, instead of two non-isomorphic we can get many, but we do not deal much with this.

NOTATION. A group will mean here an abelian group. We assume knowledge on separable reduced p -groups from Fuchs [F].

GROUP THEORETIC NOTATION

a fixed prime (natural number)
a fixed p -group which is the sum of cyclic groups
the torsion completion of B^*
A, B, C, G, H subgroups of \bar{B}^*
G is a subgroup of H

Partially supported by NSERC Grant A3040.

Received September 15, 1986

Part A arose from the conference in Udine, Italy, April 1984, in answer to a question of Cutler. Part B was written in Vancouver, summer 1985. For complementary consistency results, see Mekler and Shelah [Mk-Sh].

Explanation of Proof. We have two kinds of H (st. psf and direct); they usually exist and (except for the sum of cyclics) are contradictory. However, each has various obvious variants (and we can mix them, e.g., in order to get many non-isomorphic H 's).

OTHER NOTATION

Part A

Section 1

1.1. DEFINITION. (1) For $A \subseteq \overline{B}^*$, $\lambda_n(A)$ is the dimension of $p^n A/p^{n+1}A$ as a vector space over *Z/pZ.* Similarly for groups isomorphic to such A.

(2) $\lambda^*(A) = \min_n \sum_{n < m < \omega} \lambda_m(A).$

(3) We call *A* wide if $|A| + \aleph_0 = \lambda^*(A) + \aleph_0$.

(4) We say (B, A) is wide if: $A + B/A$ is wide and $A \subseteq_{\text{pr}} A + B$.

(5) We say (B, A) is very wide if there is $C = \langle t_i^m : i \langle \lambda, n \langle \omega \rangle \rangle$ and $B_1, A \subseteq B_1 \subseteq B + A$, s.t. A, B_1 are pure subgroups of $B + A$, $p^{n+1}t_i^n = 0 \neq p^n t_i^n$, $\{t_i^n : n, i\}$ free (see 1.2), and $B = B_1 \oplus C$ and $(\exists m)\lambda \geq |p^m(B_1/A)|$. We say A is very wide if $(A, \{0\})$ is.

1.2. DEFINITION. (1) A subset of A, $\{x_i : i < \alpha\}$ is free if $\sum e_i x_i = 0 \rightarrow$ $\Lambda_i e_i x_i = 0.$

(2) A basis of A is a maximal free subset of $A - pA$ (it is a basis of a subgroup of A which is dense, and called basic). But for $A \subseteq \bar{B}^*[p]$ we sometimes use a basis of A as a vector space over *Z/pZ.*

(3) ht_A(x) = sup{n : ($\exists y \in A$)pⁿy = x}; if $A = \overline{B}^*$ we omit it. The function ht_A defines a norm on A; we know (see [F]): \bar{B}^* is the closure of any basic subgroup. Note that $A \subseteq_{pr} B = ht_A \leq ht_B$.

(4) $A_B^{cl} = cl_B(A) = \{x \in B : \Lambda_n(\exists y \in A)$ ht $(x - y) \ge n\}$ (when $A \subseteq B$). If $B = \overline{B}^*$ we omit it. If $X \subseteq B$, $X_R^{\text{cl}} = (\langle X \rangle^{\text{g}})_R^{\text{cl}}$.

1.3. THEOREM (see, e.g., Fuchs [F]).

(1) Every A has a basis.

(2) *A bounded pure subgroup of A is a direct summand of A.*

1.4. FACT. Suppose $\bar{B}^* \in H(\lambda)$. If $B \subseteq_{pr} A + B$, $N \prec (H(\lambda), \in)$, $A \in N$, $B \in N$ then $B \subseteq_{pr} B + A \cap N \subseteq_{pr} B + A$.

1.5. DEFINITION. Let $\{t_i: i < i(*)\} \subseteq A$, $x \in A$, $a_i \in \mathbb{Z}$, we say $x =$ $\sum_{i \leq i(\bullet)} a_i t_i$ if, for every m, $\{i: \text{ht}_A(a_i t_i) \leq m\}$ is finite and $\mathrm{ht}_A(x - \Sigma\{a_it_i : \mathrm{ht}_A(a_it_i) \leq m\}) \geq m.$

1.6. CLAIM. (1) If $\{t_i : i < i(*)\} \subseteq A$ then $\Sigma_{i < i(*)} a_i t_i$ (in A) has at most one value, and if $A \subseteq_{cl} \bar{B}^*$ [see 2.1(2)] and $\Sigma_i a_i t_i$ satisfies the condition above then the sum has exactly one value.

(2) If $\{t_i : i < i(*)\}$ is independent in A, each x has at most one representation.

(3) If $\{t_i : i < i(*)\}$ is the basis of A *then* each $x \in A$ has one and only one representation, the canonical one.

Section 2

2.1. DEFINITION. (1) $B \subseteq_{\text{so}} A$ means $B \subseteq_{\text{or}} A$ and $(B)_A^{\text{cl}} \subseteq B + A[p]$.

(2) $B \subseteq_{cl} A$ means $B \subseteq_{pr} A$ and $(B)^{cl}_{A} = B$.

2.2. FACT. (1) If $B \subseteq_{pr} A \subseteq_{pr} \tilde{B}^*$ *then:*

$$
B\subseteq_{\text{sp}} A \quad \text{iff } B^{\text{cl}} \cap A \subseteq B + A[p].
$$

(2) If $B \subseteq_{\mathrm{cl}} A$ then A/B can be embedded into \bar{B}^* (so we can apply to it appropriate properties).

(3) \subseteq_{pr} is transitive as well as \subseteq_{cl} .

2.3. CLAIM. (1) If A_i is \subseteq_{pr} -increasing (for $i < \alpha$), $A_0 \subseteq_{\text{sp}} A_i$ for each i, then $A_0\subseteq_{\text{so}} \bigcup_{i<\alpha} A_i.$

(2) For every A, $\{0\} \subseteq_{\text{sp}} A$.

(3) For every $A, A \subseteq_{\text{sp}} A$.

(4) If $A \subseteq_{\text{sp}} C$, $A \subseteq B \subseteq C$ then $A \subseteq_{\text{sp}} B$.

(5) $A \subseteq_{cl} B \rightarrow A \subseteq_{sp} B \rightarrow A \subseteq_{pr} B$.

(6) $A \subseteq_{\text{sp}} B \subseteq_{\text{cl}} C$ then $A \subseteq_{\text{sp}} C$.

2.4. DEFINITION. (1) We call $A \subseteq \overline{B}^*$ st. psf. (strongly pseudo-free) *if*, when for every λ large enough (so $\bar{B}^* \in H(\lambda)$) for some $\bar{x} \in H(\lambda)$), *if* $k < \omega$, $N_0, N_1, \ldots, N_{k-1}$ are elementary submodels of $H(\lambda)$, \bar{x} belongs to each N_i , $\Lambda_{l \leq m \leq k} N_l \in N_m$ then $(\bigcup_{l \leq k} (N_l \cap A)) \subseteq_{\text{sp}} A$.

(2) For $B \subseteq A + B \subseteq \overline{B}^*$ we define "(A, B) is st. psf." similarly only in the end

$$
B+\bigg(\bigcup_{l
$$

2.5. REMARK. $(A, \{0\})$ is st. psf. iff A is st. psf.

2.6. LEMMA. *Suppose G* $\subseteq_{\text{or}} \bar{B}^*$, and *G* is very wide. Then there is *H* such *that:* $H \subseteq_{pr} \bar{B}^*$, $H[p] = G[p]$ *and is st. psf.*

2.6A. REMARK. We can have (H, B) very wide, $B \subseteq_{cl} G$ and get $H \subseteq_{pr} \tilde{B}^*$, $H[p] = G[p], B \subseteq H$, and (H, B) is st. psf.

Pf: So $G = B_1 \oplus B_2 \oplus B_3$, B_3 bounded,

$$
B_2 = \bigoplus_{\substack{i < \lambda \\ n < \omega}} \langle s_i^n \rangle^g,
$$

 $\langle s_i^n \rangle^{\mathsf{g}}$ cyclic of order p^{n+1} , and $|B_1| \leq \lambda$. We can forget B_3 for notational simplicity.

Let $\{t_i^n : n < \omega, i < \lambda_n\}$ be a basis of $B_1(p^{n+1}t_i^n = 0 \neq p^n t_i^n)$. Choose a basis I for $B_i[p]$ extending { $p^n t_i^n : n < \omega, i < \lambda_n$ } (as a vector space over **Z**/p**Z**),

$$
I=\left\{\sum_{(n,i)\in\mathcal{W}_\alpha}a_{(n,i)}^\alpha p^nt_i^n:\alpha<\alpha(*)\right\}\cup\left\{p^nt_i^n:n<\omega,i<\lambda_n\right\}
$$

and $\alpha(*) \leq \lambda$.

We now define H :

$$
H = \langle t_i^n : n, i \rangle^{\mathsf{g}} + \langle s_i^n : i < \lambda, n < \omega \rangle^{\mathsf{g}} \\
+ \left(\sum_{\substack{n, i \in \mathbb{N}_\alpha \\ n \ge m}} a_{(n,i)}^\alpha p^{n-m} t_i^n + \sum_{n \ge m} p^{n-m+1} s_\alpha^n : n < \omega, \alpha < \alpha(\ast) \right)^{\mathsf{g}}.
$$

So $\{t_i^n, s_i^n : n, i\}$ is a basis of H. Clearly H is as required, but we shall check. We leave " $H[p] = G[p]$, $H \subseteq_{pr} B^{**}$ " to the reader.

Let μ be regular large enough, so \bar{B}^* , B^* , B_1 , B_2 , B_3 , B_4 and $\langle t_i^n : n, i \rangle$, $\langle s_i^n : n, i \rangle$ belong to $H(\mu)$. Let

$$
\bar{V} = \left\langle \bar{B}^*, G, H, \langle t_i^n : n, i \rangle, \langle s_i^n : n, i \rangle, \right. \\
\left\langle \left\langle \sum_{(n,i) \in w_a} a_{(n,i)}^{\alpha} p^{n-m} t_i^n : \alpha \langle \alpha(*) \rangle : m < \omega \right\rangle, B_1, B_2, B_3 \right\rangle.
$$

Suppose $k < \omega$, for $l < k N_1 < (H(\mu), \in)$, $\overline{V} \in N_l$, and $N_l \in N_m$ for $l < m < k$. We shall show

(*)
$$
\left\langle \bigcup_{l \leq k} (H \cap N_l) \right\rangle^{\mathsf{g}} \subseteq_{\mathsf{sp}} H.
$$

The purity is easy: use 1.4(1) (inductively on k). So suppose $x \in H$, so there are $m, \alpha_0 < \cdots < \alpha_{n-1} < \alpha(*)$, $r_0, r_1, r_2 < \omega$ and $b_a^t \in \mathbb{Z}$ such that:

$$
x = \sum_{q < r_0} b_q^0 \left(\sum_{(n,i) \in w_{\alpha_q}} a_{(n,i)}^{\alpha} p^{n-m} t_i^n + \sum_{n \geq m} p^{n-m+1} s_{\alpha_q}^n \right) + \sum_{q < r_1} b_q^1 t_{i_q}^{n(q)} + \sum_{q < r_2} b_q^2 s_{j_q}^{n(q)}
$$

as we can increase m, w.l.o.g. $(n^1(q_1), i_{q_1}) \notin W_{\alpha_{q_2}}$, $(n^2(q_2), j_{q_2}) \notin W_{\alpha_{q_1}}$ for any $q_0 < r_0$, $q_1 < r_1, q_2 < r_2.$

Let $x \in (\bigcup_{l \leq k} (H \cap N_l))^{\text{cl}}$. We want to prove $x \in (\bigcup_{l \leq k} (H \cap N_l)) + H[p]$. We can replace x by $x - x'$ if $x' \in \langle \bigcup_{l \leq k} (H \cap N_l) \rangle^{g}$.[†] So w.l.o.g. $\alpha_q \notin \bigcup_{l \leq k} N_l$.

t As $\hat{V} \in N_i$, and as obviously $\{m : m < \omega\} \subseteq N$, for $i < \lambda$ clearly $[i \in N \Rightarrow s_i^n \in N_i]$, $[i \in N \rightarrow t_i^n \in N_i]$ and if $\alpha < \alpha(*)$,

$$
\left[\alpha \in N_{l} \Longrightarrow \sum_{\substack{(n,i) \in w_{n} \\ n \geq m}} a_{(n,i)}^{\alpha} p^{n-m} t_{i}^{n} \in N_{l}\right]
$$

and even $[i \in N_i \cap \lambda \rightarrow (s_i^n : n < \omega) \in N_i]$ hence $[i \in N_i \cap \lambda \rightarrow \Sigma_{n \ge m} p^{n-m+1} s_i^n \in N_i]$. Of course $[z \in N_t \cap H, b \in \mathbb{Z} \rightarrow bz \in N_t \cap H].$

Also $i_q \notin \bigcup_{l \leq k} N_l$, $j_q \notin \bigcup_{l \leq k} N_l$. So necessarily $r_1 = 0 = r_2$,[†] p^m divides b_q^0 (for $q < r_0$;[†] so $x \in B[p]$ and we finish.

2.7. LEMMA. *Suppose B* $\subseteq_{\text{cl}} G$, $G \subseteq_{\text{pr}} \overline{B}^*$, and (G, B) is wide and for no $C \subseteq G$, $|C| < \lambda^*(G)$, is $G/(B+C)^{cl}_G$ torsion complete.

Then *there is* $H \subseteq_{\text{pr}} \bar{B}^*$, $B \subseteq H$, $H[p] = G[p]$, and (H, B) is st. psf.

PROOF. Let $\{t_i^n : i < \xi_n, n < \omega\}$ be a basis of G s.t. $\{t_i^n : i < \zeta_n, n < \omega\}$ is the basis of B (so

$$
B \oplus \bigoplus_{\substack{n < \omega \\ \zeta_n \leq i < \zeta_n}} \langle t_i^n \rangle^g
$$

exists and is $\subseteq_{pr} G$, $p_i^{n+1}t_i^n = 0 \neq p^n t_i^n$). Let $\lambda_n = |\xi_n - \zeta_n|$, $\lambda(*) = \sum_{n \ge m} \lambda_n$ for every m large enough. But for every m

$$
(\exists G')\bigg[B \subseteq G' \subseteq G \land G = G' \oplus \bigoplus_{\substack{n \ge m \\ \zeta_n \le i < \zeta_n}} \langle t_i^n \rangle \bigg]
$$

so w.l.o.g. $\lambda(*) = \sum_{n \leq \omega} \lambda_n$.

Let $\{t_i^n : \zeta_n \leq i < \xi_n, n < \omega\} \cup \{\sum_{(n,i)} a_{(n,i)}^{\alpha} p^n t_i^n : \alpha < \alpha(*) \leq \lambda(*)\}$ be a basis of *G*[*p*] over *B*[*p*] (as vector spaces over **Z**/p**Z**) (so $a_{(n,i)}^{\alpha} \in \mathbb{Z}$, $w_{\alpha} \stackrel{\text{def}}{=} \{(n, i) : a_{(n,i)}^{\alpha} \neq 0\}$ countable etc.) w.l.o.g. $0 \le a_{(n,i)}^{\alpha} < p$.

Let, for $z = \sum a_{(n,i)}t_i^n \in G^{cl}$, dom $z = \{t_i^n : a_{(n,i)}t_i^n \neq 0\}$. We define, by induction on $\alpha < \alpha(*)$, H_{α} , W_{α} , y_{α}^{n} ($n < \omega$), W_{α} , V_{α} s.t.

- (a) H_{α} is increasing continuous,
- (b) $B \subseteq H_{\alpha} \subseteq {}_{pr}\bar{B}^*$,

[†] As $x \in (\bigcup_i (H \cap N_i))^c$ and the w.l.o.g. above and as $N_i \cap H \subseteq (\langle t_i^n : t_i^n \in N_i \rangle^c)_H^c$, clearly (by the w.l.o.g. above) $t_i^{n^1(q)} \in \bigcup N_i$, $t_k^{n^2(q)} \in \bigcup N_i$ for $q < r_1, q < r_2$ resp. as $\{t_i^n, s_n^m : n, m < \omega, i < \lambda_n, \alpha < \lambda\}$ is a basis of H .

^t Suppose p^m does not divides b_{φ}^0 , then $b_{q}^0 p^{n-m+1} s_{\alpha_q}^n \neq 0$. By the choice of $\langle s_{\alpha}^m : m < \omega, \alpha < \lambda \rangle$, $s_{\alpha_{\epsilon}}^{n}$ (for $n \ge m$) does not appear anywhere else and is

$$
\sum_{q < r_0} b_q^0 \left(\sum_{(m,i) \in w_n, n \geq m} a_{(n,i)}^{\alpha} p^{n-m} t_i^n + \sum_{n \geq m} p_{w_n}^{n-m+1} n \right),
$$

hence appears in the cannonical expression for x. Let us choose $m(*) < \omega$ (so that $m(*) > m$, and $p^{m(*)}B_3 = 0$). So there is $x^* \in (\bigcup_i (H \cap N_i))^{ct}$, $x - x^*$ divisible by $p^{m(*)}$. So $s_{\alpha}^{m(*)}$ appear in the canonical representation of x^* by the basis $\{t_i^n : s_i^n : n, i\}$. But $x^* = \sum x_i, x_i \in H \cap \{N_i\}$, each x_i has a representation by $\{t_i^n, s_i^n : n, i\} \cap N_l$. So necessarily $s_{\alpha_i}^{m(*)}$ belongs to some N_l , hence $\alpha_{q_0} \in N_l$ for some *l*, contradiction.

(c) $H_a = \langle B \cup \{t_i^n : t_i^n \in W_a \} \cup \{y_a^n : n < \omega, \beta < \alpha \} \rangle^g,$ (d) W_a is increasing continuous, $|W_{a+1} - W_a| \leq \aleph_0$, $W_a \subseteq \{t^n : n < \omega,$ $i < \xi$, (e) $\Sigma_{(n,i)\in w_a} a_{(n,i)}^{\alpha} p^n t_i^n \in H_{\alpha+1}$ *(f) H.[p] C G,* (g) $W_0 = \{t_i^n : n < \omega, i < \zeta_n\},\$ (h) dom $y_a^n \subseteq W_{a+1}$, (i) $y_{\alpha}^{m} = \sum_{(n,i)\in w_{\alpha}} a_{(n,i)}^{\alpha} p^{n-m} t_{i}^{n}$ for $m = 0$, (i) $p y_n^{n+1} - y_n^n \in (t_i^n : (n, i) \in W_{n+1})^8$, (k) for $n > 0$, dom $y_{\alpha}^{n} - W_{\alpha}$ is infinite, (1) for $n > 0$, $y_a^n \notin \langle B, \langle t_i^n : t_i^n \in W_a^1 \rangle^s \rangle^s + G$. *For* $\alpha = 0$: $H_{\alpha} = B$, $W_{\alpha} = \{t_i^n : n < \omega, i < \zeta_n\}.$ *For a limit:* $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta}, W_{\alpha} = \bigcup_{\beta < \alpha} W_{\beta}.$ *For* $\alpha + 1$: Let $W'_\alpha = W_\alpha \cup \{t_i^n : (n, i) \in w_\alpha\}$. By hypothesis $G/(B + \langle t_i^n : t_i^n \in W_\alpha \rangle)^{\text{cl}}_{\text{G}}$ is not torsion complete.

So there is a countable $v_{\alpha} \subseteq \{(n, i) : n < \omega, i < \xi_n\}$ and b_i^n , $0 \leq b_i^n < p$ (for $(n, i) \in v_n$, such that:

$$
\sum_{(n,i)\in v_\alpha} b_i^n p^n t_i^n \notin (\langle B+\{t_i^n : t_i^n \in W_\alpha'\}\rangle^s)^{\mathrm{cl}} + G
$$

(and is well defined). W.lo.g. v_a is disjoint to W'_a .

Let

$$
y_{\alpha}^m = \sum_{\substack{n \ge m \\ (n,i) \in \nu_{\alpha}}} b_i^n p^{n-m+1} t_i^n + \sum_{\substack{(n,i) \in \nu_{\alpha} \\ n \ge m}} a_i^n p^{n-m} t_i^n
$$

and

$$
W_{\alpha+1}=\{t_i^n:(n,i)\in v_\alpha\}\cup W_\alpha.
$$

It is easy to check that this works, $H \subseteq_{pr} \bar{B}^*$ and $H[p] = G[p]$. Let us show that H is st. psf.

Suppose $k < \omega$, μ regular large enough, for $l < k$, $N_l < (H(\mu), \in)$, $N_l \in N_m$. for $l < m < k$ and B_1 , B_2 , B_3 , B_1 , G_1 , $\langle t_i^n : n, i < \xi_n, n < \omega \rangle$, $\langle \sum_{(n,i)\in\mathbb{w}_n} a^{\alpha}_{(n,i)} p^{n-m} t_i^n : \alpha < \alpha(*) \rangle$, $\langle \sum_{(n,i)\in\mathbb{y}_n} b^{\alpha}_{(n,i)} p^{n-m} t_i^n : \alpha < \alpha(*) \rangle$, etc. belongs to each N_t .

We want

(*)
$$
\left\langle B \cup \bigcup_{l \leq k} (H \cap N_l) \right\rangle^s \subseteq_{\text{sp}} H.
$$

The purity is easy: use 1.4(1).

Suppose $x \in \langle B \cup \bigcup_{l \leq k} H \cap N_l \rangle_H^{\text{cl}} \subset H$). So let, for some m,

$$
x = y + \sum_{q < r_0} c_q y_{\alpha_q}^m + \sum_{q < r_1} c^q t_{i_q}^{n[q]}
$$

(where $r_0, r_1 < \omega$, c_q , $c^q \in \mathbb{Z}$, $i_q = i(q)$ and $y \in B$), w.l.o.g. $t_{i_q}^{n(q)} \notin \text{dom } y_q^m$ and $i_{q_1} \ge \zeta$ for $q < r_0$, $q_1 < r_1$ (as we can increase *m*).

We want to show

$$
x \in \left\langle B \cup \bigcup_{l < k} (H \cap N_l) \right\rangle^{\sharp} + H[p]
$$

so we can replace x by $x - x'$ if $x' \in B \cup \bigcup_{l \leq k} (H \cap N_l)$. So $i_q \in N_l \Rightarrow$ $(n(q), i_q) \in N_l \rightarrow t_{i_q}^{n(q)} \in H \cap N_l \rightarrow$ we can replace x by $x - c^q t_{i(q)}^{n(q)}$. So w.l.o.g. for $q < r_1$, $i_q \notin N_i$. However for any $z \in \bar{B}^*$

$$
z \in B \cup \bigcup_{i} (H \cap N_{i}) \to \text{dom } z \subseteq \left\{ t_{i}^{n} : i < \zeta_{n} \text{ or } i < \zeta_{n} \text{ and } i \in \bigcup_{i < k} N_{i} \right\}
$$

hence $z \in \langle B \cup \bigcup_i H \cap N_i \rangle_G^{\text{cl}} \to \text{dom } z \subseteq \{t_i^n : i < \zeta_n \text{ or } i < \xi_n, i \in \bigcup N_i\}.$ We can assume $\Lambda_{q \le r_1} n(q) < m$ (as we can increase *m*).

So as $x \in \langle B \cup \bigcup_i H \cap N_i \rangle_G^d$, and $t_i^{n(q)} \in \text{dom } x$, and $i_q \notin \bigcup_i N_i$ necessarily $c^q t_i^{n(q)} = 0$, so really $r_1 = 0$.

Also if $\alpha_q \in N_l$, $y_{\alpha_q}^m \in N_l \cap G$, so we can replace x by $x - c_q y_{\alpha_q}^m$. So w.l.o.g. $\Lambda_{q \lt r_0}(\alpha_q \notin N_l).$

If there is q s.t. $pc_qy_{\alpha_q}^m \neq 0$, w.l.o.g. $\alpha_0 < \alpha_1 \cdots < \alpha_{r_0-1}$, and let $q = q(*)$ be a maximal s.t. $pc_q y_{\alpha_q}^m \neq 0$.

So $q(*) < q < r_0 \Rightarrow pc_q y_{\alpha_q}^m = 0 \Rightarrow c_q y_{\alpha_q}^m \in H[p] = G[p]$. As $\langle v_\alpha : \alpha < \alpha(*) \rangle \in$ N_t , v_α not a subset of (and even disjoint to) $\bigcup_{\beta<\alpha} v_i$, clearly

$$
v_{\alpha} \cap N_l \neq \emptyset \Leftrightarrow V_{\alpha} \subseteq N_l \Leftrightarrow y_{\alpha}^n \in N_l.
$$

So as dom $x \subseteq (\bigcup_i (N_i \cap \{t_i^n : i \le n, i\}) \cup W_0$, clearly $v_{\alpha_{\alpha(1)}} \cap \text{dom } x = \emptyset$; now computing formal sums, looking outside $W_{\alpha_{\alpha}(n)}$ we easily get for some $m \ge 1$

$$
y_{\alpha_{q(\bullet)}}^m \notin \langle B \cup \{t_i^n : t_i^n \in W'_{\alpha_{q(\bullet)}}\} \rangle^{\mathrm{cl}} H[p]
$$

and so to

$$
y^1_{\alpha_{q(i)}} \notin \langle B \cup \{t_i^n : t_i^n \in W_{\alpha_{q(i)}}\} \rangle^{\mathrm{cl}} + H[p].
$$

Hence there is no $q < r_0$, $pc_q y_{\alpha}^m \neq 0$ so $x \in H[p]$ and we finish.

We can note also

2.8. DEFINITION. $G \subseteq_{\text{pr}} \bar{B}^*$ is called direct if G has a base $\{t_i^n : n < \omega,$ $i < \lambda_n$ s.t. for every $x \in pG$ there is $y \in G$, $py = x$ and dom $x =$ dom y. We define similarly $B \subseteq_{cl} G$ when (G, B) is direct: if G/B is.

2.9. CLAIM. If $G \subseteq_{pr} B^*$, *then there is* $H \subseteq_{pr} B^*$, $G[p] = H[p]$ and H is direct.

PROOF. Let $\{t_i^n : n < \omega, i < \lambda_n\}$ be a base of G. Now every $x \in G$, $(ht(x) = m(x) + 1)$ has a unique representation $x = \sum_{n \ge m(x)} a_{(n,i)}^x p^{n-m(x)} t_i^n$, $(\forall n)$ ($\exists \leq^x \leq^x \in \mathbb{R}$) $a_{(n,i)}^x \neq 0$; w.l.o.g. $0 \leq a_{(n,i)}^x < p^{m(*)+1}$, $\text{dom } x = \{t_i^n : a_{(n,i)}^x \neq 0\}.$

Let $\{x^{\alpha}+\bigoplus_{n,i}(p^{n}t_{i}^{n})^{\beta}:\alpha<\alpha^{*}\}\$ be a basis of $G[p]/\bigoplus_{n,i}(p^{n}t_{i}^{n})^{\beta}$ (so $m(x^{\alpha}) = 0$) (as a vector space over $\mathbb{Z}/p\mathbb{Z}$). Let H be the subgroup of \bar{B}^* generated by

$$
\{t_i^n:n,i\}\cup\left\{\sum_{\substack{n\geq m\\(n,i)\in w_\alpha}}a_{(n,i)}^x p^{n-m}t_i^n:\alpha<\alpha^*,m<\omega\right\}.
$$

2.10. CLAIM. Suppose $G_1 \subseteq_{\text{pr}} G \subseteq_{\text{pr}} \overline{B}^*$, $H_1 \subseteq_{\text{pr}} \overline{B}^*$, $H_1[p] = G_1[p]$, $[H_1 \cap G^{\text{cl}} \subseteq G_1^{\text{cl}}]$. Then there is $H, H_1 \subseteq H \subseteq \overline{B^*}, H[p] = G[p], H \cap H_1^{\text{cl}} = H_1$, and $(H, H₁)$ is direct.

PROOF. Let $\{t_i^n : n < \omega, i < \zeta_n\}$ be a basis of G_1 , $\{t_i^n : n < \omega, i < \zeta_n\}$ be a basis of G. Let $\{\sum_{(n,i)\in\mathbb{N}_n}a_{(n,i)}^{\alpha} p^n t_i^n + G_i[p] \oplus \bigoplus_{n,i} \langle p^n t_i^n \rangle^{\beta} : \alpha < \alpha(*)\}$ be a basis of *G*[*p*]/ G _[p] + $\bigoplus_{(n,i)} (p^n t_i^n)^8$. Let *H* be

$$
H_1+\langle t_i^n:n<\omega,\zeta_n\leq i<\zeta_n\rangle^{\mathfrak{s}}+\left\langle\sum_{(n,i)\in w_{\alpha}n\geq m}a_{(n,i)}^{\alpha}p^{n-m}t_i^n:i<\alpha(\ast),m<\omega\right)^{\mathfrak{s}}.
$$

2.11. REMARK. (1) We can prove that if H is direct and not the sum of cyclics, *then H* is not st. psf. This is really the content of 6.1.

(2) Note that if H, G are pure subgroups of $\mathbf{\vec{B}}^*$, $H[p] = G[p]$ then *H* is the sum of cyclics iff G is the sum of cyclics.

Section 3

Context U is a fixed set (we shall deal with subsets of it) and **F** a family of pairs of subsets of it; we write $A/B \in F$ or say " A/B is free" or "A is free over B when $(A, B) \in \mathbb{F}$. χ will be a fixed cardinal.

CONVENTION. Adding a superscript $+$ to an axiom means that whenever

" $A/B \in \mathbb{F}$ " or its negation appears in the assumption, then we demand B to be free over \varnothing .

Ax I^{**}: If A/B is free, and $A^* \subseteq A$, then A^*/B is free.

Ax II: (a) A/B is free iff $A \cup B/B$ is free.

(b)_u A/B is free *if* $|B| < \mu$, $A \subseteq B$.

Ax III: If A/B , B/C are free and $C \subseteq B \subseteq A$ then A/C is free.

Ax IV_{Ku}; If A_i ($i < \lambda$) is increasing, for $i < \gamma < \lambda$, A_{γ} , $\bigcup_{i < i} A_i \cup B$ is free, $\lambda < \kappa$, $|U_{i < \lambda}A_i| < \mu$ then $U_{i < \lambda}A_i/B$ is free. (IV_u will mean IV_{u,u} and IV means IV_{∞} .)

3.1. DEFINITION. We say "for the x-majority of $X \subseteq A$, $P(X)$ " if there is an algebra A with universe A and χ functions, such that any $X \subseteq A$ closed under those functions satisfies P. We can replace $X \subseteq A$ by $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}_{\leq \lambda}(A)$: alternatively we say $\{X \subseteq A : P(A)\}$ is a *x*-majority.

Ax VI: If A is free over $B \cup C$, then for the *x*-majority of $X \subseteq A \cup B \cup C$, $A \cap X/(B \cap X) \cup C$ is free.

Ax VII: If A is free over B, then for the x-majority of $X \subseteq A \cup B$, $A/(A \cap X) \cup B$ is free.

CONVENTION. (1) We are always assuming Ax II_{λ} , III, IV_{λ}, VI, VII; others will be assumed explicitly, except when we mention some of them but not others.

(2) Ax II_i means II(a) + II(b)_i.

(3) Ax II(b) means Ax II(b)_u for every μ , and Ax II means II(a) + II(b). Similarly for the other axioms.

3.2. DEFINITION. A/B is κ -free if: $\kappa > \chi$ and for the χ -majority of $X \subseteq A \cup B$ which has power $\langle x, A \cap X/B \rangle$ is free *or* $\kappa \leq \chi$ and $[A' \subseteq A \wedge |A'| < \kappa \Rightarrow A'/B$ is free].

3.2A. REMARK. Note that if Ax I^{**} holds, then A/B is κ -free iff for every $A' \subseteq A$ of cardinality $\lt K$, A'/B is free (so the distinction between the two cases disappears). It can easily be shown (see [Sh 1]) that:

3.3. CLAIM. (1) $[Ax II (a), (b)_{\lambda}, III, IV_{\lambda}⁺, VI, VII and $\lambda > \chi$. Suppose$ $A = \bigcup_{i \leq \lambda} A_i$, A_i increasing continuous, $|A_i| < \lambda$, λ regular uncountable, then *A/B* is free *iff* for some closed unbounded set $C \subseteq \lambda$, $C \cup \{0\} = \{\delta_i : i < \lambda\}, \delta_i$ increasing and $A_{\delta,+}/A_{\delta} \cup B$ is free for each *i iff A/B* is λ -free and $\{i : A/A_i \cup B$ is λ -free} contains a closed unbounded subset of λ .

(2) If $|A| = \lambda$ we can omit \prod_{μ^+} .

Also by [Sh 1]:

3.4. CLAIM. [Ax I^{**}, II(a), III, IV_{μ} ⁺, VI, VII]. If A/B is λ -free, $\chi < \mu < \lambda$, *then for every* $A' \subseteq A$ *,* $|A| < \mu$ *there is* $A'', A' \subseteq A''$ *,* $|A''| \leq |A'| + \chi$ *,* A''/B *is* free and $A/A'' \cup B$ is λ -free.

3.5. DEFINITION. $E_{\kappa}^{k}(A)$ is the filter on $\mathcal{P}_{\leq \kappa}(A)$ generated by the sets

$$
\left\{\bigcup_{i\leq \kappa} A_i : A_i \subseteq A, |A_i| < \kappa, F(\langle A_j : j \leq i \rangle) \subseteq A_{i+1}\right\}
$$

where $F: \mathbb{R}^{\geq}[\mathcal{P}_{\leq \kappa}(A)] \to P_{\leq \kappa}(A)$ (we use κ regular $\geq \aleph_1$).

3.6. THEOREM [(Shelah) Ax II(a), III, IV_i⁺, VI, VII]. *Suppose* $|A| = \lambda$, λ *is singular* $>\chi$, $\lambda = \sum_{i < \text{cf } \lambda} \lambda_i$, λ_i *increasing continuous. Then A/B is free for* **F** *iff A/B is* λ *-free iff, for every i, {* $X \in \mathcal{P}_{\leq \lambda^+}(A)$ *:* X/B *free}* $\neq \emptyset \mod E_{\lambda^+}^{\lambda^+}(A)$ *.*

3.7. REMARK. The theorem was proved with more axioms (I^*, V) in [Sh] 1], then the author eliminates I* and this is represented in [BD]. Later (see [Sh 2]) the author found a simpler proof and both new parts avoid Ax V. Hodges includes in [HI a representation of this proof in a different, but equivalent, axiomatic treatment. Lately we note that Ax III is not needed.

Section 4

4.1. DEFINITION. $U^{sc} = \bar{B}^*$. $F^{sc} = \{(B, A) : B + A = A \oplus \bigoplus_{(n,i) \in J} \langle t_i^n \rangle^g \}$ (equivalently: $B + A/A$ is the sum of cyclic p-groups).

Really we should have written

$$
F^{sc} = \left\{ (X, Y) : \langle X \cup Y \rangle^g = \langle Y \rangle^g + \bigoplus_{(n,i) \in J} \langle t_i^n \rangle^g \right\}
$$

but as we have only countably many functions in $U^{\rm sc}$, this has no consequence.

4.2. DEFINITION. $U^{sp} = \bar{B}^*$.

 $F^{sp} = \{(B, A): (B, A)$ is st. psf.}.

REMARK. If $A, B \in N_1$, $N_1 \prec (H(\chi), \in)$ then $A + B \cap N_1 = A + I$ $(A + B) \cap N_l$.

4.3. LEMMA. (1) F^{sc} satisfies Ax I**, II, III, IV, VI, VII.

(2) *If* $A/B \notin F^{\infty}$ *,* $|\langle A \cup B \rangle^{\frac{s}{\langle B \rangle}}|^s$ is countable, then *there is* $x \in \langle A \rangle^s$, $x + B$ divisible by pⁿ for every n, equivalently $x \in B_{A+B}^{cl}$.

PROOF. Probably well known (anyhow, it is true).

4.4. FACT. (1) F^{sp} satisfies Ax II.

(2) If A_i ($i \leq \alpha$) is increasing continuous, $A_i \subseteq_{\text{sp}} A_{i+1}$, $(A_i)_{A_i}^{\text{cl}} \subseteq A_{i+1}$ then $A_0 \subseteq_{\text{sp}} A_\alpha.$

Section 5. λ -sets and λ -systems

5.1. DEFINITION. (1) For a regular uncountable cardinal λ ($>$ \aleph_0) we call S a λ -set if:

(a) S is a set of strictly decreasing sequences of ordinals $\langle \lambda \rangle$.

(b) S is closed under initial segments and is non-empty.

(c) for $\eta \in S$, if $W(\eta, S) \stackrel{\text{def}}{=} \{i : \eta^{\wedge} \langle i \rangle \in S \}$ is non-empty *then* it is a stationary subset of $\lambda(n, S) \stackrel{\text{def}}{=}$ Sup $W(n, S)$ and $\lambda(n, S)$ is a regular uncountable cardinal. Also $\lambda((\rangle, S) = \lambda$.

We sometimes allow $\lambda = 0$, then the only λ -set is $\{ \langle \rangle \}$.

(2) For a λ -set S, let S_f (=set of final elements of S} be ${n \in S: (\forall i)n^{\wedge} \langle i \rangle \notin S}$ and S_i (= set of initial elements of S} be $S - S_f$ (so $S_f = \{ \eta \in S : \lambda(\eta, S) = 0 \}$. Let $k(S)$ be lg(n) for $\eta \in S_f$ if all $\eta \in S_f$ have the same length.

(3) We call S a (λ, κ) -set if S is a λ -set and $\lambda(\eta, S) > \kappa$ for $\eta \in S_i$.

(4) For λ -sets S¹, S² we say $S^1 \leq S^2$ (S¹ a sub- λ -set of S²) if S¹ \subseteq S² and $\lambda(\eta, S^1) = \lambda(\eta, S^2)$ for every $\eta \in S^1$ (so $S_i^1 = S^1 \cap S_i^2$). Clearly \leq is transitive.

(5) We say that "for almost every $\eta \in S[\eta \in S_f]P$..." iff for every $S' \leq S$ some $\eta \in S'[\eta \in S'_1]$ satisfies P.

(6) For $\eta = \langle \alpha_0, \ldots, \alpha_m \rangle$ let $\eta^+ = \langle \alpha_0, \ldots, \alpha_{m-1}, \alpha_m+1 \rangle$.

5.1A. NOTATION. In this section S will be used to denote λ -sets.

5.1B. REMARK. Sometimes we can change (a) to " $\lambda(\eta \restriction l, S) > \lambda(\eta \restriction m, S)$ for $l < m \leq \lg(\eta)$ ", but we found it less useful.

5.2. CLAIM. (1) S is a λ -set, $\eta \in S_i$, then $S^{[\eta]} \stackrel{\text{def}}{=} {\{v : \eta \wedge v \in S\}}$ is a $\lambda(\eta, S)$ -set and $\lambda(v, S^{[n]}) = \lambda(n^{\wedge}v, S).$

(2) If $\lambda > \aleph_0$ is regular, $W \subseteq \lambda$ is a stationary set and for each $\delta \in W$, S^{δ} is a λ_{δ} -set where λ_{δ} is a cardinal $\leq \delta$ (possibly $\lambda_{\delta} = 0$, $S^{\delta} = \{ \langle \rangle \}$) *then* $S \stackrel{\text{def}}{=} {\{ (\quad \} } \cup {\{ (\delta)^\wedge \eta : \eta \in S^\delta \text{ and } \delta \in W \}}$ is a λ -set. In this case $\lambda(\langle \delta \rangle^{\wedge} \eta, S) = \lambda(\eta, S^{\delta})$ for $\delta \in W, \eta \in S^{\delta}$.

5.3. CLAIM. (1) If S is a λ -set,. $\lambda(\eta, S) > \kappa$ for every $\eta \in S_i$ (holds always for $\kappa = \aleph_0$) and G is a function from S_f to κ , then for some $S^1 \leq S$ the function G is constant on S_f^1 .

(2) If S is a λ -set, κ a regular cardinal $(\forall \eta \in S)(\lambda(\eta, S) \neq \kappa)$ and G is a function from S to κ , then for some $S^1 \leq S$ and $\gamma < \kappa$ for every $\eta \in S^1$, $G(n) < \gamma$.

(3) If h is a function from S_f to a set K of regular cardinals and $(\forall \eta \in S_i) \land_{l \leq l(n)} (\lambda(\eta \mid l, S) \neq h(\eta))$, and G is a function with domain S_{ϵ} , $G(\eta) < h(\eta)$, then for some $S' \leq S$, there are ordinals $\alpha_{\kappa} < \kappa$ for $\kappa \in K$, such that for $\eta \in S'_1$, $G(\eta) < \alpha_{h(n)}$.

(4) If h is a function from S_f to ordinals, S a λ -set, *then* there are a λ -set $S' \leq S$ and k, m, h such that

- (i) for every $\eta \in S'_b$, $l(\eta) = k$;
- (ii) if η , $\nu \in S_5$, $\eta \restriction m = \nu \restriction m$ then $h(\eta) = h(\nu)$;
- (iii) if $\eta \mid m \neq v \mid m, \eta \in S_f$, $v \in S_f$ but $\eta \mid l=v \mid l$ for $l < m$, then $h(\eta) \neq v$ $h(v)$; moreover (if $m > 0$)

$$
\eta(m-1) < v(m-1) \Leftrightarrow h(\eta) < h(\nu).
$$

- (5) For a given λ -set S and property P the following are equivalent:
- (a) for almost every $\eta \in S$, $P(\eta)$;

(b) there are closed unbounded sets C_n of $\lambda(\eta, S)$ such that $(\forall \eta \in S)[\wedge_{l \leq l(n)} \eta(l) \in C_{n+l} \rightarrow P(\eta)].$

5.4. DEFINITION. (1) A λ -system is $\mathcal{B} = (B_n : \eta \in S_c)$ where:

- (a) S is a λ -set, and we let $S_c = \text{com}(S) \stackrel{\text{def}}{=} {\{\eta^{\wedge}(i) : \eta \in S_i, i < \lambda(\eta, S)\}},$
- (b) $B_{n^{\wedge}(i)} \subseteq B_{n^{\wedge}(i)}$ when $\eta \in S_i$, $i < j$ are $\langle \lambda(\eta, S), \rangle$
- (c) if δ is a limit ordinal $\langle \lambda(\eta, S) \rangle$ then $B_{\eta^*(\delta)} = \bigcup \{B_{\eta^*(i)} : i \leq \delta\},\$
- (d) $|B_{n^{\wedge}(i)}| < \lambda(\eta, S)$ for $i < \lambda(\eta, \delta)$.
- Note: $\eta \in S_c \Rightarrow \eta^+ \in S_c$.

Section 6

6.1. DEFINITION. Assume A, $B, A + B \subseteq_{pr} \tilde{B}^*$ we say that $\mathscr{B} = \langle B_n : \eta \in$ S_c) is a λ -witness for (A, B) if:

- (a) λ is regular uncountable or $\lambda = 0$,
- (b) S is a λ -set,
- (c) $\langle B_n : \eta \in S_c \rangle$ a λ -system and let $B_{\langle \cdot \rangle} = B$ and for $\eta \in S_c$, $B_n \subseteq A$,
- (d) $\langle \bigcup_{l \leq \lg(n)} B_{n+l} \rangle^s$ is a pure subgroup of $A + B$,
- (e) $\langle B_n \cap \bigcup_{l \leq l g(n)} B_{n+l} \rangle^g$ a pure subgroup of B_n (eq. of $\langle \bigcup_{l \leq l(n)} B_{n+l} \rangle^g$),
- (f) for $\eta \in S_f$ there is $x_n \in B_n$, $x_n \notin \langle U_{\ell \leq g(n)} B_{\eta \restriction \ell} \rangle^g + (A + B)[p]$, (equivalently, $px_n \notin \langle \bigcup_{l} B_{n+l} \rangle^g$, $x_n \in \langle \bigcup_{l \leq \text{lg}(n)} B_{n+l} \rangle^{\text{cl}}$.

6.2. LEMMA. *Suppose A, B, A + B are pure subgroups of* \bar{B}^* *. If there is a* λ -witness $\mathcal{B} = \langle B_n : \eta \in S_c \rangle$ for (A, B) then $(A, B) \notin F^{sp}$.

PROOF. Suppose $(A, B) \in F^{sp}$, let μ be regular large enough, $x \in H(\mu)$. We choose by induction on $l \eta_l \in S$ and N_l s.t. (letting $B_{(+) +} = B + A$):

- (1) $\eta_0 = \langle , \, \, \cdot \rangle, \, \, \lg(\eta_1) = l, \, \eta_1 = \eta_{l+1} \upharpoonright l;$
- (2) $x \in N_1 \prec (H(\mu), \in), N_0, \ldots, N_t \in N_{t+1};$
- (3) $N_l \cap \lambda(\eta_l, S)$ is an ordinal $\alpha_l, \eta_{l+1} = \eta_l^{\wedge} \langle \alpha_l \rangle \in S$.

There is no problem to do this.

So for some $k < 0$, $\eta_k \in S_f$. We prove, by induction on $l = 0, \ldots, k$,

(*) (a) $(B \cup \bigcup_{i \leq l} (N_i \cap A))^g \subseteq_{pr} A + B$, (b) $\langle B \cup \bigcup_{i \leq l} (N_i \cap A))^s \cap (B_{n_0} \cup \cdots \cup B_{n_{l-1}} \cup B_{(n_l^+)})^s$ $= \langle B_{n_0} \cup \cdots \cup B_{n_{i-1}} \cup B_{n_i} \rangle^{\mathfrak{g}}.$

For (*) (a), use 1.4(1). For (*) (b), look at (3) above.[†] For $l = k$, we get (as $px_{n_k} \in B_{(n_k^+)} - \langle \bigcup_{l \leq k} B_{n_{k_l}} \rangle^{\beta}$ that

$$
px_{\eta_k}\notin \langle B_{\eta_0}\cup\cdots\cup B_{\eta_k}\rangle^{\mathsf{g}}.
$$

On the other hand:

$$
x_{\eta} \in \Big\langle B \cup \bigcup_{l \leq k} B_{\eta_k \upharpoonright l} \Big\rangle^{\mathrm{cl}} = \langle B_{\eta_0} \cup \cdots \cup B_{\eta_k} \rangle^{\mathrm{cl}} \subseteq \Big\langle B \cup \bigcup_{l \leq k} (N_l \cap A) \Big\rangle^{\mathrm{cl}}.
$$

So x_n show that

$$
\left\langle B\,\cup\,\bigcup_{l\,\leq k}\,\left(A\,\cap\,N_l\right)\right\rangle^{\sharp}\mathcal{L}_{\mathrm{sp}}\,A\,+\,B.
$$

twe prove by induction on *l*. For $l = 0$, check. Suppose $x \in (B \cup \bigcup_{i \leq l} (N_i \cap A))^s$ and $x \in$ $(B_{n_0} \cup \cdots \cup B_{n_{n-1}} \cup B_{(n_n+1)})^s$. So for some $y \in B$, $x_i \in N_i \cap A$ we have $x = y + \sum x_i$. As

$$
x\in (B_{\eta_0}\cup\cdots\cup B_{\eta_{l-1}}\cup B_{(\eta_l^*)})^s\subseteq (B_{\eta_0}\cup\cdots\cup B_{\eta_{l-1}}\cup B_{(\eta_{l-1}^*)})^s
$$

hence for some $z_0 \in N_l \cap B_{n_0}, \ldots, z_{l-1} \in N_l \cap B_{(n_l^+,l)}$, $\zeta_i \in N_l \cap B_{(n_l^+,l)}$, $x_i = \sum z_i$. Now $x = \sum x'_i$ where $x'_i = x_i + z_i$ if $i < l$, $x'_i = z_i$. However $N_i \cap B_{(\eta_{i-1})} = B_{\eta_i}$ so $x'_i \in B_{\eta_i}$. As $l > 0$ we can use the induction hypothesis on l for $x - x'$.

Hence this shows (A, B) is not st. psf.

Section 7

7.1. CLAIM. Suppose $(A, B) \notin F^{\text{sc}}, B \subseteq_{\text{pr}} A \subseteq_{\text{pr}} \overline{B^*}$ then there is $A_1, B \subseteq A_1$, $A_{1}[p] = A[p]$ and (A, B) has a witness.

PROOF. As $(A, B) \notin F^s$, by 4.3 and [Sh 2] there is $\langle B_n : \eta \in S_c \rangle$ s.t. (a) $\lambda = 0$ or λ a regular uncountable cardinal, (b) S is a λ -set, (c) $\langle B_n : \eta \in S_c \rangle$ is a λ -system, we let $B_{(-)} = B$ and $B_n \subseteq A$, **(d)** $\langle \bigcup_{l \leq |\mathbf{s}(n)|} B_{n+l} \rangle^{\mathbf{g}} \subseteq_{\text{pr}} A$, (e) $B_{\eta} \cap (\bigcup_{l \leq \lg(\eta)} B_{\eta+l})^{\mathsf{g}} \subseteq_{\text{pr}} B_{\eta}, (\bigcup_{l \leq \lg(\eta)} B_{\eta+l})^{\mathsf{g}},$ (f) for $\eta \in S_f$ there is $x_\eta \in B_{\eta^+}$, $x_\eta \notin \langle \bigcup_{l \leq \lg(\eta)} B_{\eta \, l} \rangle^g$, $x_\eta \in \langle \bigcup_{l \leq \lg(\eta)} B_{\eta \, l} \rangle^{\text{cl}}$. Let $D_n = B_n[p]$. Easily (by (e)):

(*)
$$
\left\langle \bigcup_{l \leq \lg(\eta)} B_{\eta \, l} \right\rangle^{\mathsf{g}} [p] = \left\langle \bigcup_{l \leq \lg(\eta)} D_{\eta \, l} \right\rangle^{\mathsf{g}}.
$$

We now define E_n for $\eta \in S_c$ by induction (with the order: inclusion on $\bigcup_{l \leq \log(n)} B_{n+l}$) s.t. (letting $E_{l-1} = B$)

- (A) $\langle U_{l \leq \lg(n)} E_{n+l} \rangle^g \subseteq_{\text{or}} \bar{B}^*,$
- (B) $\langle \bigcup_{l \leq \lg(\eta)} E_{\eta \dagger l} \rangle^{\mathsf{g}} [p] = \langle \bigcup_{l \leq \lg(\eta)} D_{\eta \dagger l} \rangle^{\mathsf{g}}$,
- (C) $\langle E_n : \eta \in S_c \rangle$ will be a λ -system (set $E_{\langle \cdot \rangle} = D_{\langle \cdot \rangle}$),
- (D) if $\eta \in S_c$ then E_n ⁺/ $\langle \bigcup_{l \leq k(n)} E_{n+l} \rangle$ ^s has an element x of height infinite and order p^2 .

In limit stages and in the first stage, there are no problems. Dealing with v successor necessarily $v = \eta^+, \eta$ of maximal length. Defining B_{η^+} , if $\eta \notin S$ use 2.10. If $\eta \in S_t$ w.l.o.g. $px_n \in (\bigcup_{l \leq \lg(\eta)} B_{n_l l})^s$ so by purity there is $x'_n \in$ $B_n \cap (\bigcup_{i \leq |\alpha(n)|} B_{n+i})^s, px'_n = px_n$ so w.l.o.g. $px_n = 0$ hence $x_n \in D_n$. So for some $t_n \in \langle \bigcup_{l \leq |\mathbf{g}(n)|} B_{n+l} \rangle^{\mathbf{g}}, \, \text{ht}(x_n - \Sigma_{m \leq n} t_m) \geq n, \, \text{so w.l.o.g. } pt_m = 0 \, \text{so } \text{ht}(t_m) \geq m.$

Now when E_{n+l} ($l \leq l(\eta)$) are defined, choose $s_n \in (\bigcup_{l \leq \lg(\eta)} E_{n+l})^s$, $p^n s_n = t_n$, and let $B'_{n^+} = \langle \sum_{n \ge m} p^{n-m} s_n : m \langle \omega \rangle^s$ and complete as before (using 2.10).

7.2. CONCLUSION. If $\lambda = \min | p^n G |$, $G \subseteq_{\text{pr}} \bar{B}^*$ is not the sum of cyclics, G is not torsion complete and even for no $A \subseteq_{pr} G$, $|A| < \lambda$, is G/A_G^{cl} is torsion complete, *then* there is $H \subseteq_{pr} \tilde{B}^*$, $H[p] = G[p]$, H, G are not isomorphic.

PROOF. By 2.7, there is H_1 , $H_1[p] = G[p]$, $H_1 \subseteq_{pr} B^*$, $(H_1, \{0\}) \in F^{\text{sp}}$. By 7.1, there is $H_2 \subseteq_{pr} \bar{B}^*$, $H_2[p] = H[p]$, H_2 has a witness.

By 6.2, $(H_2, \{0\}) \notin F^{sp}$ together H_1 , H_2 are not isomorphic so G is not isomorphic to H_1 or to H_2 (or to both).

Part B

Section 8

8.1. LEMMA. *Suppose* $G \subseteq_{pr} \overline{B^*}, \Lambda_{n < \omega}[\lambda_n(G) \leq \lambda^*(G)], \lambda^*(G) < |G|$, *moreover* $2^{x*(G)} < 2^{|G|}$ *and* $G \neq G^{\text{cl}}$ *. Then Conclusion 7.2 holds (we really have 2 IGI non-isomorphic ones).*

PROOF. We can find $x^* \in G^{cl} - G$, hence $x^* \in G^{cl} - G$, $x^* \neq 0 = px^*$. Let ${t_iⁿ: i < \lambda_n(G), n < \omega}$ be a basis of G ($pⁿ⁺¹t_iⁿ = 0 \neq pⁿt_iⁿ$). Let $G_0 = \langle t_i^n : i <$ $\lambda_n(G)$, $n < \omega$)⁸.

Let $\{s_i: i < i(*)\}$ be a maximal subset of $G[p^2]$ s.t. $\Sigma_i e_i s_i \in G[p] + G_0$ implies $e_iS_i \in G[p] + G_0$ (for each i). Clearly $|i(*)| = |G|$.

For $T \subseteq \{i : i \leq i(*)\}$, let

$$
s_i^T = \begin{cases} s_i, & i \notin T, \\ s_i + x^*, & i \in T; \end{cases}
$$

$$
A_T \stackrel{\text{def}}{=} C_0[p^2] + G[p] + \langle s_i^T : c < i(*) \rangle^g.
$$

As in 2.9, there is $H_T \subseteq_{pr} B^*$, $H_T[p^2] = A_T$ hence $H_T[p] = G[p]$.

It suffices to prove that no $(2^{k*(G)})^+$ of the groups H_T are isomorphic.

Suppose $\{H_T : i < (2^{\lambda^*(G)})^+\}$ are isomorphic, $T_i \neq T_j$ for $i \neq j$. Let $h_i : H_T \rightarrow$ H_{T_0} be an isomorphism. For some $i \neq j$, h_i $G[p^2] = h_j$ $G_0[p^2]$. So $h_j^{-1}h_i : H_{T_i} \to H_{T_j}$ is the identity on $G_0[p^2]$. Choose $\gamma \in T_i \equiv \gamma \notin T_j$. Now s_i^T is necessarily sent to itself being the limit of a ω -sequence from $G_0[p^2]$. But s_i^T – s_i^T \neq *x'* which is not in H_{T_i} , a contradiction.

8.2. LEMMA. *Suppose G* $\subseteq_{pr} \bar{B}^*, (G, \{0\}) \notin F^{\text{sc}}, \lambda = \text{Min}_n | p^n G |$, $B \subseteq_{pr} G$, $|B| < \lambda$, G/B_G^{cl} *is torsion complete of power* λ , then *there is* $H \subseteq_{\text{pr}} \tilde{B}^*$, $H[p] =$ *G[p], H* \cong *G* provided *G.C.H. holds (or at least* $[\mu < \lambda \rightarrow 2^{\mu} \leq \lambda]$ *).*

PROOF. Let $\lambda = |p^{n(*)}G|$, so for some $G_1, G_2, G = G_1 \oplus G_2, p^{n(*)}G_2 = 0$, $|G_1| = \lambda$, w.l.o.g. $B \subseteq_{\text{pr}} G_1$, $|B| < \lambda$, G/B_G^{cl} torsion complete.

As G is not torsion complete there is $x \in B^{cl} - G$, hence $x^* \in B^{cl} - G$, $px^* = 0 \neq x^*$. Let $\{t_i^n : n < \omega, i < \xi_n\}$ be a basis of G (t_i^n of order p^{n+1}) where $\{t_i^n : n < \omega, i < \zeta_n\}$ is a basis of B.

We can find infinite $v \subseteq \omega$ s.t. $\langle |\xi_n - \zeta_n| : n \in v \rangle$ is non-decreasing, $\Pi_{n\in\nu}|\xi_n-\zeta_n|=\lambda, \ \nu = \{n_i: l<\omega\}, \ n_i < n_{i+1}, \ n(l)=n_l.$ Let $\kappa_l = |\xi_{n_l}-\zeta_{n_l}|$, and let $h_n: \Pi_{l \leq n} \kappa_l \to \{i: \zeta_{n(l)} \leq i < \xi_{n(l)}\}$ be one to one. For $\eta \in \Pi_{l \leq \omega} \kappa_l$ let

$$
y_{\eta}^{m} = \sum_{\substack{n \geq m \\ n \leq \lg(\eta)}} p^{n(l)-m} t_{h(\eta \restriction n)}^{n(l)}.
$$

For some $s_n^0 \in (B)^{\mathrm{cl}}_G$

$$
z_\eta^0 = y_\eta^m + s_\eta^0 \in G.
$$

Let $\{x_i : i < i(*)\} \subseteq G[p]$ be s.t. $\{z_\eta^0 : \eta \in \Pi_{l < \omega} \kappa_l\} \cup \{x_\gamma : \gamma < \gamma(*)\}$ is a basis of $G[p]/B[p] \oplus \bigoplus_{(n,i)} (t_i^n)^*$.

Let $s_{0\eta} = \sum_{(n,i)\in w_a} a_{(n,i)}^{\eta} p^n t_i^n$, $w_{\eta} \subseteq \{(n,i): i < \zeta_n, n < \omega\}$, w.l.o.g. $x^* =$ $\Sigma c_n p^n t_0^n$. For $S \subseteq \Pi_{i \leq \omega} \kappa_i$ let H_S be generated by

$$
B \cup \left\{ y_n^m + \sum_{(n,i) \in w_n} a_{(n,i)}^n p^{n-m} t_i^n : \eta \in S, m < \omega \right\}
$$
\n
$$
\cup \left\{ \begin{array}{l} y_n^m + \sum_{(n,i) \in w_n} a_{(n,i)}^n p^{n-m} t_i^n + \sum_{n \ge m} c_n p^{n-m} t_0^n : \eta \notin S \\ n \ge m \end{array} \right\}
$$
\n
$$
\cup \left\{ \sum_{\substack{n \ge m \\ (n,i)}} b_{(n,i)}^n p^{n-m} t_i^n : m < \omega, \gamma < \gamma(*) \right\}
$$

where $x_r = \sum b_{(n,i)}^{\gamma} p^{n-m} t_i^n$. For every S this is o.k.

Case α : $\lambda^{|\mathcal{B}|} = \lambda$ In this case

8.2A. FACT. We can find $\langle g_n : \eta \in \Pi_{n \leq \omega} \kappa_n \rangle$, g_n a function from $B \cup$ $\{t_{h(\eta+n)}^{n(l)}:n<\omega\}$ into g such that for every function $g:B\cup$ $\{t_{h(v)}^{n(l)}: v \in \bigcup_{n \leq w} \Pi_{l \leq n} \kappa_l\}$ into G for some $\eta \in \Pi_{l \leq w} \kappa_l, g_{\eta} \subseteq g$.

Pf: Like [Sh 3, VIII, 2.6].

Now we can choose S as follows: for each $\eta \in \Pi_{1 \leq \omega} \kappa_l$, the truth value of " $\eta \in S$ " is determined such that no isomorphism from H_s onto G extending g_n exists. This is easily done, and clearly sutficient.

Case β *:* λ strong limit singular. Necessarily cf $\lambda > \aleph_0$. We use [Sh 4, 2.5] and do the obvious things.

8.2A. REMARK. We may be tempted to use in case (α) $\lambda = \lambda^{\aleph_0}$ (instead of $\lambda = \lambda^{<\lambda}$, but by [Mk-Sh] 5.3 this is problematic.

8.3. REMARK. If λ is regular, $\{\delta < \lambda : \text{cf } \delta = \aleph_0\}$ is not "small" (for definition and references see [G-S]), we can get the result.

If λ is singular, $|B| < \mu < \kappa < \lambda \leq 2^{\mu}$, $\{\delta < \kappa : \text{cf } \delta = \omega \}$ not small, we can still get the result (see [Sh 5, XIV, §1]).

8.4. FACT. We can weaken the hypothesis in 8.1: $G \subseteq_{pr} \bar{B}^*$ is not the sum of cyclics and is not torsion complete, $\lambda = \text{Min}_{n < \omega} |p^n G| > \lambda^*(G)$, $\{t_i^n : n < \omega, i < \xi_n\} \subseteq G$, a base,

$$
\kappa_n < \kappa_{n+1} < \omega \quad \text{for } n < \omega,
$$
\n
$$
\kappa_n \le \kappa_{n+1} \le \lambda^*(G),
$$

 $h_n: \Pi_{l \leq n} \kappa_l \to \xi_n$ one to one, and for $\eta \in \Pi_{n \leq \omega} \kappa_n$ there is $x_n \in G[p]$, $x_n =$ $\sum a_i^n p^n t_i^n$,

$$
\{t_i^n : a_i^n p^n t_i^n \neq 0\} \cap \left\{t_{h(v)}^n : v \in \prod_{l < n} \kappa_l, n < \omega\right\} \subseteq \{t_{h_n(\eta \restriction n)}^n : n < \omega\}
$$

and is infinite.

PROOF. The same proof essentially as 8.2 (really $\{t_i^n : a_i^n p^n t_i^n \neq 0\}$) $\{t_{h,(n|n)}^n : n < \omega\}$ is infinite, $\kappa_n > \aleph_0$ suffice).

8.5. CONCLUSION. (1) (G.C.H.) If $G \subseteq_{\text{or}} \bar{B}^*$ is not s.c. nor torsion complete, *then* there is $H \subseteq_{pr} \bar{B}^*, H[p] = G[p], H, G$ not isomorphic.

(2) Instead of G.C.H., " $(\forall \lambda)$ { $\delta < \lambda^+$: cf $\lambda = \aleph_0$ } is not small" is enough.

PROOF. (1) W.l.o.g. $\lambda_n(G) \leq \lambda^*(G)$ for each n. [Two possibilities:

(A) all non-isomorphism pfwork if we say not "isomorphic even if we add a bound p -group".

(B) $\exists n(*)$, $\forall n \geq n(*)$, $\lambda_n(G) \leq \lambda^*$ and make $p^{n(*)}G$, $p^{n(*)}H$ non-isomorphic. Now the proof is just using 7.2 , 8.1 , 8.2 — they cover all cases.]

(2) For this observe

(A) If Min_n $|p^n G| \geq \mu$ > Min_m $\Sigma_{n>m} \lambda_n(G)$, μ regular, then there is $H \subseteq_{cl} G$, $|p^n H| \geq \mu$, $\text{Min}_m(\Sigma_{n>m} \lambda_n(H))$ has confinality ω [prove by induction on $\operatorname{Min}_m(\Sigma_{n>m} \lambda_n(H))]$.

164 S. SHELAH Isr. J. Math.

(B) The proof of 8.1 gives: if $\mu \stackrel{\text{def}}{=} \text{Min}_{n}|p^nG|$, $H \subseteq_{cl} G$, $\kappa \stackrel{\text{def}}{=} \text{Min}_{m}(\Sigma_{n>m} \lambda_{n}(H)), \mu^{\kappa} \lt 2^{|H|}, \text{ then the conclusion of 7.2 holds (we get }$ really $2^{|H|}$ non-isomorphic ones).

REMARK. We cannot just omit $G \subset \tilde{H}$ by [Mk-SH] §6.

Section 9

9.1. REMARK. An alternative definition of "H is direct" is: if $\bar{B}^* \in H(\mu)$, $N_l \prec (H(\mu), \in)$, $\Lambda_{l \prec m} N_l \in N_m$ then $\langle U_{l \prec k}(N_l \cap H) \rangle_H^{\text{cl}} \subseteq_{\text{pr}} H$ (similarly for " $(H, H₁)$ is direct").

9.2. THEOREM. If G.C.H., $G \subseteq_{\text{pr}} \bar{B}^*$, λ is regular, $(\forall K)[K \subseteq G \land |K| < \lambda \rightarrow G/K$ not sum of cyclic], G not torsion complete, *then* there are $\geq 2^{\lambda}$ pairwise non-isomorphic groups H, $H \subseteq_{pr} \bar{B}^*$, $H[p] =$ *G[p].*

REMARK. (1) Under $V = L$ we can get rid of " λ regular". We should correct case (B) as in 8.2's proof. It is enough that $\{\delta \leq \lambda^+ : \text{cf } \delta = \omega\}$ is not small for every λ .

(2) By 9.2 and compactness for singular, if in 9.2 λ is singular, the number is \geq ^{λ}2.

PROOF. W.l.o.g. $|G| = \text{Min}_{n < \omega} |p^n G|$. Clearly there is $G_1 \subseteq_{pr} G$, $|G_1| \ge$ λ , $(\forall K)[K \subseteq G_1 \wedge |K| < |G_1| \Rightarrow G_1/K$ not sum of cyclic].

By applying suitably compactness for singular, we get $\mu = |G_1| \le |G|$ is a regular cardinal.

Case A: For some $H \subseteq_{\text{cl}} G$, $|H| < |G|$, G/H is torsion complete and of power $|G|$.

The desired conclusion follows by [Sh 4] and the proof of 8.2.

Case B: For some $H \subseteq_{pr} G$, $|H| < |G|$, $|(H)_G^{\text{cl}}| = |G|$ or even just $|H| < |(H)_G^{\text{el}}| \leq |G| \leq 2^{|H|}$. Then use the proof of 8.5(2) (or 8.1).

Let $\lambda \stackrel{\text{def}}{=} \text{Min}\{ |K|: G/K \text{ is sum of cyclic}, K \subseteq_{pr} G \}$. So if λ is not strong limit singular, we can assume that $2^{\mu} \geq \lambda$.

Case C: Not case A, not case B.

OBSERVATION. W.l.o.g. $K \subseteq G \wedge |K| < \mu \Rightarrow |(K)^{cl}_G| < \mu$.

Really " \Rightarrow $|(K)^{cl}_{G}| \leq \mu$ " suffices, and this follows by GCH. For trying to weaken the assumption GCH, note the following. If $2^{\mu} \ge \lambda$, as not case B, $K \subseteq_{\text{pr}} G \land |K| \leq \mu \Rightarrow |(K)^{cl}_{G}| \leq \lambda$, so w.l.o.g. $G_1 \subseteq_{cl} G$.

If λ is strong limit singular $\mu_1 \stackrel{\text{def}}{=} (2^{\mu})^+ < \lambda$

If λ is strong limit singular $\mu_1 \stackrel{\text{def}}{=} (2^{\mu})^+ < \lambda$ and $[K \subseteq_{\text{or}} G \wedge |K| \leq \mu_1 \Rightarrow |(K)^{\text{cl}}_{G}| \leq \lambda]$. So if for some $G_2 \subseteq_{\text{pr}} G$, $|G_2| = \mu_1$, $(\forall K)[K \subseteq_{pr} G_2 \land |K| < \mu \rightarrow G_2/K$ not sum of cyclic], we finish. Otherwise there is a minimal $\mu_2 \ge \mu$,

 $G_3 \subseteq_{pr} G$, $|G_3| = \mu_2$, $(\forall K)[K \subseteq_{pr} G_3 \land |K| < \mu_2 \rightarrow G/K$ not sum of cyclic.

By 1.x μ_2 is regular, and easily $[K \subseteq_{\text{pr}} G \wedge |K| < \mu_2 \Rightarrow |(K)_G^{\text{cl}}| < \mu_2$, so we can use μ_2 instead μ .

If λ is not strong limit we have assumed $2^{\mu} \leq \lambda$, and by not case B, $[K \subseteq G \wedge |K| \leq \mu \rightarrow |(K)^{cl}_G| \leq \mu]$. Trying to replace μ by $\mu_2 \stackrel{\text{def}}{=} \mu^+$ we succeed in the previous case except when $\mu = \lambda$. By then "not case B" gives the conclusion.

OBSERVATION. W.l.o.g. if $\mu < |G|$: (i) $(\forall K \subseteq_{\text{or}} G_1)[|K| < \mu \rightarrow G_1/(K)^{cl}_G$ is not torsion complete] and (ii) $G_1 \subseteq_{cl} G$.

PROOF OF THE OBSERVATION. Define by induction on $\zeta \leq \mu$, G₁, s.t.

- (a) $G_1^c \subseteq G$, $|G_1^c| \leq \mu$,
- (b) G_1^{ζ} is increasing continuous (in ζ),
- (c) $G_1^0 = G_1$ is not s.c. (hence G_1 will not be),
- (d) $G_1^{3\zeta+1} = (G_1^{3\zeta})_G^{cl}$,
- (e) $G_1^{3\zeta+2} \subseteq_{pr} G$,

(f) $G_1^{3\zeta+3} \subseteq_{pr} G$, $G_1^{3\zeta+3}/G_1^{3\zeta+2}$ is not bounded.

Note: $G_1^{\delta} \subseteq_{\text{pr}} G_1$. Now replace G_1 by G_1^{μ} .

OBSERVATION. W.l.o.g. $\mu = |G| \Rightarrow G_i = G$, hence (i), (ii) alone hold by \lnot case A, \lnot case B (so (i), (ii) always hold).

Let $\langle B_n : \eta \in S_c \rangle$ be a μ -system satisfying (a)–(f) from the proof of 7.1 with $B = B_{(+)} = \{0\}, B_{(+)} = \bigcup_{\alpha < \mu} B_{(\alpha)} = G_1$ and

(g) $\bigcup \{B_{n^*(i)} : i \leq \lambda, (\eta, S)\} \subseteq B_{n^*},$

(h) $G/B_{(a)}$ is $\lambda(\langle \alpha \rangle, S) - F^{sc}$ -free, $B_{(a+1)} \subseteq_{cl} G$. By [Sh 2] w.l.o.g. there is $m(*)$ s.t. for every $\eta \in S_f$, cf[$\eta(0)$] = $\lambda(\eta \mid m(*), S)$.

Let $\{t_i^n : n < \omega, i < \mu\}$ be a basis of G_1 , and w.l.o.g, for $\alpha \in W((\) , S)$, α is divisible by $|\alpha|$ and $\{t_i^n : n < \omega, i < \alpha\}$ is a basis of $B_{(n)}$, and there are $U_{\eta} \subseteq \{t_i^n : n < \omega, i < \mu\}$ for $\eta \in S$ s.t. U_{η} is a basis of $B_{\eta}/\bigcup_{l < \lg(\eta)} B_{\eta/l}$. Now for each $\delta \in W^* = {\alpha < \mu : \alpha \in W((\ \) , S)}, \alpha = \sup \alpha \cap W((\) , S)}$ choose a

closed unbounded $C_{\delta} \subseteq \delta \cap W((\ \)$, S) of order type cf δ . We can assume that $(\alpha)W^*$ is a set of inacessible, $\lambda(\langle \delta \rangle, S) = \delta$ or $(\beta)\delta \in W^* \to c f \delta = \kappa_1$, $(\kappa_1 < \lambda((\lambda, S)), \lambda(\langle \delta \rangle, S) = \kappa_2.$

In case (α) we know $\{\delta \in W^* : W^* \cap \delta \text{ is not stationary in } \delta\}$ is stationary so w.l.o.g. (*) for $\delta \in W^*$, $W^* \cap \delta$ is not stationary in δ , hence w.l.o.g. each C_{δ} is disjoint to W^* .

We shall define for every $W \subseteq W^*$ a group $H^W \subseteq_{pr} B^*$, $H^W[p] = G[p]$ s.t.: $(D_{\lambda}$ — the club filter) $W_1 \neq W_2 \text{ mod } D_{\lambda}$ implies $H^{W_1} \cong H^{W_2}$.

We now define E_n^W for $\eta \in S_c$ as in the proof of 7.1 but

if $\alpha \notin W$, we define $E_{(\alpha+1)}^W$ as in the proof of 2.7,

if $\alpha \in W$, we want to define $E_n^W(\alpha) \in \eta \in S$) as in the proof of 7.1, however we have a problem wanting to reconstruct W/D_u from H^W . We do not want that what we do for (α) will spoil what we have done for any $\beta < \alpha$, $\beta \notin W$.

Assume first that $m(*) = 1$; w.l.o.g.

(***) for every α { $t_i^n : n < \omega$, $i < \gamma_\alpha$ } is a basis of B_α , $\gamma_\alpha + \gamma_\alpha < \gamma_{\alpha+1}$; for every i:

$$
\langle t_i^n : j \leq i, n < \omega \rangle_{\mathcal{B}^*}^{\mathcal{C}} + \langle t_{i+1}^n : j < n, l < \omega \rangle^{\mathcal{B}} \mathcal{D} \langle t_i^n : j < i + \omega, n < \omega \rangle_{\mathcal{G}}^{\mathcal{C}}
$$

and say z_i witness it, $pz_i = 0$.

Now building $E_{\langle\alpha\rangle}^W\gamma$ we make them direct over $B_{\langle\alpha\rangle}$, but we use z_i essentially like in 2.7.

The case $m(*)$ > 1 is more complicated — we should imitate [Sh 2].

Completing the definition of H^W after $\langle E_n^W; \eta \in S \rangle$ was defined, is as in 2.7.

REFERENCES

[BD] S. Ben-David, *On Shelah's compactness of cardinals,* Isr. J. Math. 31 (1978), 34-56; 394.

[F] L. Fuchs, *Abelian Groups,* Vols. 1, 2, Academic Press, New York, 1970, 1973.

IG-S] R. Grossberg and S. Shelah, *On universal locally finite groups,* Isr. J. Math. 44 (1983), 289-302.

[H] W. Hodges, *In singular cardinality , locally free algebras are free,* Algebra Univ. 12 (1981), 205-220.

[Mk-Sh] A. Mekler and S. Shelah, *Uniformization principles,* J. Symb. Logic, to appear.

[Sh 1] S. Shelah, *A compactness theorem in singular cardinals, free algebras, Whitehead problems and transversal,* lsr. J. Math. 21 (1975), 319-344.

[Sh 2] S. Shelah, *lncompactness in regular cardinals,* Notre Dame J. Formal Logic 26 (I 985), 195-228.

[Sh 3] S. Shelah, *Classification Theory,* North-Holland, Amsterdam, 1978.

[Sh 4] S. Shelah, *Constructions of many complicated uncountable structures and Boolean algebras,* Isr. J. Math. 45 (1983), 100-146.

[Sh 5] S. Shelah, *Proper Forcing,* Lecture Notes No. 940, Springer-Verlag, Berlin, 1982.