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ABSTRACT

Let B*be a separable reduced (abelian) p-group which is torsion complete. We
ask whether for G C,, B*there is H C . B*, H[p] = G[p), H not isomorphic
to G. If G is the sum of cyclic groups or is torsion complete, the answer is
easily no. For other G, we prove that the answer is yes assuming G.C.H. Even
without G.C.H. the answer is yes if the density character of G is equal to
Min, | p"G |, i.e.,

Min p"G| =Min T [(p"G)pY(p"*'G)p]I-

n>m

Of course, instead of two non-isomorphic we can get many, but we do not deal
much with this.

NOTATION. A group will mean here an abelian group.
We assume knowledge on separable reduced p-groups from Fuchs [F].

GRroUP THEORETIC NOTATION

p a fixed prime (natural number)

B* a fixed p-group which is the sum of cyclic groups
B* the torsion completion of B*

A,B,C, G, H subgroups of B*

GCH G is a subgroup of H
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Part A arose from the conference in Udine, Italy, April 1984, in answer to a question of Cutler.
Part B was written in Vancouver, summer 1985. For complementary consistency results, see
Mekler and Shelah [Mk-Sh].
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(4,B)*
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G is a pure subgroup of H

(the socle of G) is {x €EG: px =0}

elements of B*

the subgroup of B* which 4 U B generates

We usually say “sum of . . . groups” instead of “direct sum
of . . . groups™.

(4, B)®

is the direct sum

Explanation of Proof. We have two kinds of H (st. psf and direct); they
usually exist and (except for the sum of cyclics) are contradictory. However,
each has various obvious variants (and we can mix them, e.g., in order to get
many non-isomorphic H’s).

OTHER NOTATION

integers
natural numbers

i,j,a B, 7,9, ¢ordinals

a,b,c,d, e
n,mk, Il r
YIS TI Ny 4
(Xoy v o5 Xp)
H(A)

<

Ig
Section 1

cardinals

means a sequence

the family of sets with transitive closure of cardinality < 4;
we do not distinguish strictly between this set and the
model (H(A), €)

elementary submodel

“the length of”

Part A

1.1. DeFINITION. (1) For 4 C B* 4,(A4) is the dimension of p"4/p"*'A4 as
a vector space over Z/pZ. Similarly for groups isomorphic to such 4.

(2) A*(A)=Min, Z, < Am(A).

(3) We call A wide if |A| + Ry =A*(4) + R,.

(4) We say (B, 4)is wide if: A + B/4iswideand 4 C, 4 + B.

(5) We say (B, A) is very wide if there is C=(t":i <1, n<w) and
B, A C B, CB+A,s.t. A, B, are pure subgroups of B + A, p"*'t" =0 # p"t",
{t}:n,i} free (see 1.2),and B =B, ® Cand (I m)A = | p™(B,/A)|. We say A
is very wide if (4, {0}) is.
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1.2. DEFINITION. (1) A subset of 4, {x;:i<a} is free if Zex; =0=
Aex; =0.

(2) A basis of 4 is a maximal free subset of 4 — pA (it is a basis of a subgroup
of A which is dense, and called basic). But for 4 C B*[p] we sometimes use a
basis of A4 as a vector space over Z/pZ.

(3) ht,(x) =sup{n:(IyEA)p"y = x}; if 4 = B* we omit it. The function
ht, defines a norm on A4; we know (see [F]): B* is the closure of any basic
subgroup. Note that 4 C,, B=ht, = ht,.

(4) Af =clp(4)={xEB: A,(FyE€EA)ht(x —y)=n} (when 4 CB). If
B = B*we omitit. If X C B, X§ = ({(X)®)3.

1.3. THEOREM (see, €.g., Fuchs [F]).
(1) Every A has a basis.
(2) A bounded pure subgroup of A is a direct summand of A.

1.4. FAcT. Suppose B*€H(A). If BC,, A+ B, N <(H(A), €), AEN,
BENthenBC,B+ANNC,B+A.

1.5. DeEFINITION. Let {f:i<i(x¥)} CA, x€A, a,€Z, we say x =
Zi<iwait; if, for every m, {i:htat)<m} is finite and
ht,(x — Z{ai;: ht (at) = m}) = m.

1.6. Cramm. (1) If {;:i <i(x)} C 4 then Z, ;. a;t; (in A) has at most one
value, and if 4 C, B*[see 2.1(2)] and Z; a;t; satisfies the condition above then
the sum has exactly one value.

(2) If {t;: i <i(+)} is independent in 4, each x has at most one represen-
tation.

(3) If {t;:i <i(«)} is the basis of 4 then each x €EA has one and only one
representation, the canonical one.

Section 2

2.1. DeFINITION. (1) B €, A means B C ;. 4 and (B)§ C B + A[p].
(2) B Cy A means B C, A and (B)§ = B.

2.2. Fact. (1) IfBC A C, B*then:

=pr =opr
BC,A4 iff BYNACB+A[p)
(2) If B C4A then A/B can be embedded into B* (so we can apply to it

appropriate properties).
(3) C . istransitive as well as C,.
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2.3. CeamM. (1)IfA;is C-increasing (for i <a), 4, C, A, for each i, then
AO g.f,p Ui<aAi-

(2) Forevery 4, {0} C,, A.

(3) Forevery 4,4 C, A.

4 IfAC,C,ACBCCthenA CB.

) AC B=AC,B=4C,B.

(6) AC,BC,Cthend C,,C.

2.4. DEFINITION. (1) Wecall 4 C B*st. psf. (strongly pseudo-free) if, when
for every A large enough (so B*€H(A)) for some xEH(R)), if k <w,
Ny, Ny, ..., N,_, are elementary submodels of H(4), X belongs to each N,,
Aicm<x NNEN, then (U, (N, N A)) C,, 4.

(2) For B C A + B C B* we define “(4, B) is st. psf.” similarly only in the
end

B +( U N nA)gs,,B +A.

1<k

2.5. REMARK. (4, {0})is st. psf. iff A is st. psf.

2.6. LEMMA. Suppose G C . B*, and G is very wide. Then there is H such
that: H C ,, B*, H[p] = G[p] and is st. psf.

2.6A. REMARK. We can have (H, B) very wide, B C, Gand get H C ,, B*,
H[p]l=Glp), BC H,and (H, B) is st. psf.

Pf: So G =B, ® B, ® B;, By bounded,
B,= © (518,

i<d
n<w

(s")® cyclic of order p"*!, and |B,| =A. We can forget B, for notational
simplicity.

Let {t:n <w, i <A,}beabasisof B, (p"*'t} =0 # p™"). Choose a basis I
for B[ p] extending { p"t}': n < w, i <A,} (as a vector space over Z/pZ),

I={ X aky p"t{':a<a(*)}u {p"t' n<w,i<i,}

(n.i)ew,

and afx) = A.
We now define H:
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H={:n i)+ (st i<i,n<w)t

g

+< > Gy p" T + ¥ p"""“s;‘:n<w,a<a(*)> )
(n,i))EwW, nzm

nzm

So {#], s/ : n, i} is a basis of H. Clearly H is as required, but we shall check. We
leave “H[ p] = G[ p], H C . B*” to the reader.

Let u be regular large enough, so B*, B*, B, B, B;, B and
(tF:n,i),{(s":n,i)belong to H(u). Let

I7=<B*, G,H,(t":n,i),(s":n,i),

<< > a{:,np"""t{':a(a(*)):m<w>,Bl,Bz,B3>.

(n,)EW,

Suppose k < w, for | <k N; < (H(n), €), VEN,,and N,EN,, for | <m <k.
We shall show

6] < U @ mN,)>stpH.

1<k

The purity is easy: use 1.4(1) (inductively on k). So suppose x € H, so there are
m,a,< .-+ <a,_, <o), ry, r, r,<wand b} EZ such that:

x=3 bg( Y ak,pttr+ Y p"""“s;">+ Y b9+ ¥ bist@

g<ry (n,0)EwW, nzm q<n q<n
e

as we can increase m, w.l.o.g. (n'(q,), i,) & Wae (nX(@), Jp,) & Wey, for any ¢, < r,,
Q<r,<n.

Let x€(U, . (H N N))¥. We want to prove x (U, . (H N N)) + H[p].
We can replace x by x — x’if x’€( U, .« (H N N)))&.'Sow.lo.g. o, & U, N,.

t As VEN, and as obviously {m:m <w}CN, for i<A clearly [iEN=s'EN],
[fEN=t'EN]and if a <a(x),

[aEN,= > a(‘Z,,,)p"""t['EN,]
(n.i)EwW,
nzm
and even iEN, NA=(s":n<w)EN] hence [EN,NA=Z, ., p"~"*Is*€N)]. Of course
[zEN,NH,bEZ=bzEN, N H].
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Also i, & U, N}, j, & U< N. So necessarily r; = 0 = r,,* p™ divides b (for
q <ry);¥ so x €EB[p] and we finish.

2.7. LEMMA. Suppose B C4 G, G C . B*, and (G, B) is wide and for no
CCG, |C|<A¥G), is GIB + C)g torsion complete.
Then there is H C,, B*, BC H, H[p] = G[p], and (H, B) is st. psf.

= pr

PrROOF. Let {f/:i<{,n<w}beabasisof Gs.t. (1:i<{,,n<w)is
the basis of B (so

B® @ ()¢

{p=i<dy,

existsandis C G, p!t'tf =0# p"t/). Letd, = |&, — (|, A(%) = 2,2, A, for
every m large enough. But for every m

(EIG’)[BQG’QGAG=G’® ® <t.»">]

{pEi<d,

sow.l.og. A(x)=2, ., 4,.

Let {#/:{, =i<{, n<w}VU{Z4,,a6, 0" a<a(x) = A(x)} be a basis
of G[p] over B[p] (as vector spaces over Z/pZ) (so af,,EZ,
W, < {(n,i):ag,, # 0} countable etc.) w.lo.g. 0 =af, ;) < p.

Let, for z =2 a,, 1! €EGY, dom z = {t!: a, ;" # 0}. We define, by induc-
tionon a<a(x), H,, W,, y2(n <w), w,, v, s.t.

(a) H, is increasing continuous,

(b) BCH,C, B*,

' Asx€(U,(H N N,)))* and the w.1.o.g. above and as N; N H C ((t7: t? EN;)%)%, clearly (by the
w.Lo.g. above) 110 € UN,, t,j’("’ eUN forg<r,qg<ryresp.as (1,50 :n,m<w,i <i,,a<l}
is a basis of H.

t Suppose p™ does not divides b2, then b0p" ™+ ‘s" # 0. By the choice of (s™:m <w,a <<A),

,,' (for n = m) does not appear anywhere clse and i 1s

2e( 3 arre 3 oA,

q<ry (mi)Ewg,nzm nzm

hence appears in the cannonical expression for x. Let us choose m(x) < w (so that m(») > m, and
Pp7*By = 0). So there is x*€(U,(H N N)), x — x* divisible by p™®. So s7* appear in the

canonical representation of x* by the basis {¢!: s/': n,i}. Butx* =3 x), x, EH n N, each x;hasa

representation by {¢7,s!': n, i} N N,. So necessarily s”‘“’ belongs to some N, hence a, € N for

some /, contradiction.



152 S. SHELAH Isr. J. Math.

(© Hi.=(BU{tf: ;€W U {yl n<w, B <a})t

(d) W, is increasing continuous, |W,,, — W, | =R,, W,C{t":n<w,
1<),

€) Zpiew, Anny P"FEH, 4y,

(0 Hp]C G,

(8 Wo={tl"n<w,i<(,},

(h) domy; C W,,,,

(1) Yy = Zpiew, &y p" "t for m =0,

(D) pya' =yl (n, DEW, )%

(k) for n >0, dom y" — W, is infinite,

(1) forn>0,y*¢& (B, (1! 1] EWHEY + G,

Fora=0: H,=B,W,={tl:n<w,i<{,}.

Foralimit: H,= U,  Hy, W,= U;_, W,.

For o+ 1: Let W.=W,U{t:(n,i)EwW,}. By hypothesis
G/(B + (17 1P € W_))4 is not torsion complete.

So there is a countable v, C {(n,i):n <w, i <{,} and b, 0 = b < p (for
(n, I)E€v,), such that:

L WP B+ TEW])+G

(n,i)Ev,

(and is well defined). W.lo.g. v, is disjoint to W..

Let
= —m+1 -
y;n_ Z bi"p" m tin+ 2 a[npn mtin
nzm (n,i)Ew,
(n,i)Ev, nzm
and

Wea={t:(n,)EV,}UW,.

It is easy to check that this works, H C B* and H[ p] = G| p]. Let us show
that H is st. psf.

Suppose k < w, u regular large enough, for / <k, N, < (H(u),€), NEN,,
for I<m<k ad B, B, By, B, G, (tf:n, i<, n<w),
(Ziniew, Ay D"~ M a<a(x)), (Zgae bGo D" "t i a <a(x)), etc. belongs
to each N,.

We want

*) <B ulU @#HN N,)>g C,H.

i<k
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The purity is easy: use 1.4(1).
Suppose x €E(B U U, ., H N N))§ (< H). So let, for some m,
x=y+ ¥ cyn+ ¥ @
q<ro q<l'|
(where ro, i <, ¢,, ¢'€Z, i, =i(q) and y €B), w.l.o.g. {f“’&dom y;" and
i, = { for ¢ <ry, q; <r, (as we can increase m).
We want to show

1<k

xE<BU U (HnM)>‘+H[p1

so we can replace x by x —x’ if x’€BU U, (HNN). So i,EN=
(n(q), i,)EN,= 179 €H N N;= we can replace x by x — c’t}J. So w.l.o.g. for
g <r, i, & N,. However for any z € B*

zeBU U (HﬂN,)=>domzQ{t,—":i<§,,ori<é,,andi€ U N,}
!

1<k

hence zE(BU U HNN)g=domz C {ff:i<{,ori<¢, i€ UN;}. We
can assume A, ., n(g) < m (as we can increase m).

Soas x€(B U U,H NN, and 1/” Edom x, and i, & U, N, necessarily
i@ =0, so really r, = 0.

Also if @, €N, y7EN, N G, so we can replace x by x — oVar- SO w.l.o.g.
Aq<ro(aq EN,).

If there is g s.t. pc,ys # 0, w.l.o.g. ag<ey-+- <a,_,, and let ¢ = g(x) be a
maximal s.t. pc vy # 0.

So g(x)<q<ry=pcys =0=cy€H[p]=G[p] As (v,:a<oa(x))E
N,, v, not a subset of (and even disjoint to) U,_, v, clearly

v, N, # @V, C N, <= y"EN,.

Soasdom x C (U,(N, 0 {F:i <n,i}) U Wy, clearly v
computing formal sums, looking outside W,

g (1 domx = J; now
we easily get for some m = 1

()

VL BB U (W) HI )

Qg(a)
and so to
Vo E(B U (11 €W, )+ H(p].

Hence there is no g <ro, pc,yy # 0so x EH[p] and we finish.
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We can note also

2.8. DEFINITION. G C , B* is called direct if G has a base {/:n <w,
i <4,} s.t. for every x € pG there is yEG, py = x and dom x = dom y. We
define similarly B C G when (G, B) is direct: if G/B is.

2.9. CLamM. If G C , B*, then there is H C . B*, G[p]=H|[p] and H is
direct.

Proor. Let {f':n<w, i <4,} be a base of G. Now every x€G,
(ht(x) = m(x)+ 1) has a unique representation x =2, n) a&,y P"~ "8,
(V1) (3 <%i)a; ) # O, wlog 0= af,) < p™*!, domx = (1 af; ) # O).

Let {x*+®,,(p")t:a<a*} be a basis of G[p)/®,,(p"])? (so
m(x*)=0) (as a vector space over Z/pZ). Let H be the subgroup of B*
generated by

{th:n,i} U { Y agap T i a<a*,m <w}.
(nn,i?en:v,

2.10. Cramm. Suppose G, C, G C, B* H, C,B* H][pl=Glp]

[H N G*C G{'). Then thereis H, H, C H C B*, H[pl = G[p], H N H=H,,
and (H, H,) is direct.

Proor. Let {f!:n<w,i<{,}beabasisof G, {tf:n<w,i<}bea
basis of G. Let {Z, jyew, 4. D"t + Gi[ D] @ @,,,,- (p"t])®: a < a(*)} be a basis
of G[pVG\[p]+ D, ( p"tI)8 Let H be

g
H+{: n<w,(, =i <é,,)“+< Y agyptT i <a(x), m <a)> .
(ni)Ew,nzm
2.11. REMARK. (1) We can prove that if H is direct and not the sum of
cyclics, then H is not st. psf. This is really the content of 6.1.
(2) Note that if H, G are pure subgroups of B*, H[ p] = G[ p] then H is the
sum of cyclics iff G is the sum of cyclics.

Section 3

Context U is a fixed set (we shall deal with subsets of it) and F a family of
pairs of subsets of it; we write A/B €F or say “A/B is free” or “4 is free over B
when (4, B)EF. x will be a fixed cardinal.

CoNVENTION. Adding a superscript -+ to an axiom means that whenever
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“4/B €F” or its negation appears in the assumption, then we demand B to be
free over .

Ax I**: If A/B is free, and A* C A, then A*/B is free.

Ax II: (a) A/B is free iff A U B/B is free.

(b),A/Bis free if |B| <u,A CB.

Ax III: If A/B, B/C are free and C C B C A4 then A/C is free.

Ax IV, If 4, (i <A) is increasing, for i <y <4, 4,/ U;<i4; U B is free,
A<k, | U, A4;| <u then U, 4/B is free. IV, will mean IV,, and IV
means IV _.)

3.1. DEFINITION. We say “for the y-majority of X C 4, P(X)” if there is an
algebra 4 with universe 4 and y functions, such that any X C A4 closed under
those functions satisfies P. We can replace X C Aby X € P(4d) or X € 2. ;(A):
alternatively we say {X C A: P(4)} is a y-majority.

Ax VI: If A is free over B U C, then for the y-majorityof X CA UB U C,
AN X/I(BnNX)UCis free.

Ax VII: If A4 is free over B, then for the y-majority of X CA U B,
A4 0 X) U Bis free.

CONVENTION. (1) We are always assuming Ax II,, III, IV,, VI, VII; others
will be assumed explicitly, except when we mention some of them but not
others.

(2) Ax II, means II(a) + II(b);.

(3) Ax1I(b) means Ax II(b), for every u, and AxII means II(a) + II(b).
Similarly for the other axioms.

3.2. DEFINITION. A/B is k-free if: x>y and for the y-majority of
XCAUB which has power <k, ANX/B is free or k<y and
[A’CAA|A) <k=A'IBis free].

3.2A. REMARK. Note that if Ax I** holds, then A/B is k-free iff for every
A’ C A of cardinality <k, A’/B is free (so the distinction between the two cases
disappears). It can easily be shown (see [Sh 1]) that:

3.3. Ceamm. (1) [AxII (@), (b),, III, IV,+, VI, VII and A > x]. Suppose
A = U, ., 4, A; increasing continuous, |4,| <A, A regular uncountable, then
A/B is free iff for some closed unbounded set C C 4, C U {0} ={4,:i <A}, d;
increasing and A4;,, /A, U Bis free for each i iff A/Bis A-freeand {i: A/4; U Bis
A-free} contains a closed unbounded subset of 4.

(2) If |4] = A we can omit II+.
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Also by [Sh 1]:

3.4. CLam. [AxT** II(a), IlL, IV,+, VI, VII]. If A/B is A-free, y <u <A,
thenforevery A’ C A, |A| <uthereisA”, A’ C A", |A”| S |A’| +x,A”/Bis
free and A/4” U B is A-free.

3.5. DEFINITION. E}(A) is the filter on # .(4) generated by the sets

{ U 4,:4,C4, |4, <KaF(<Aj:j§i))gAi+l}

iZx

where F: *>[ 2. (A)] = P..(A) (we use k regular = X,).

3.6. THEOREM [(Shelah) Ax II(a), III, IV,+, VI, VII]. Suppose [A| =21, Ais
singular >y, A = Z, .5, A, A; increasing continuous. Then A/B is frge forFiff
A/B is \-free iff, for every i, {X € P, (A): XIB free) #+ & mod E-(4).

3.7. REMARK. The theorem was proved with more axioms (I*, V) in [Sh
1], then the author eliminates I* and this is represented in [BD]. Later (see
{Sh 2}) the author found a simpler proof and both new parts avoid Ax V.
Hodges includes in [H] a representation of this proof in a different, but
equivalent, axiomatic treatment. Lately we note that Ax III is not needed.

Section 4

4.1. DEFINITION. U*=B*  F*={(B,A):B+A=40 D¢, (1)}
(equivalently: B 4+ 4/4 is the sum of cyclic p-groups).
Really we should have written

Fsc={(x, Y):(XUY)e=(Y)e+ @ (t{’)“}

(ni)eJ

but as we have only countably many functions in U*, this has no consequence.
4.2. DEFINITION. U®™ = B*,
FP={(B,A):(B,A)isst. psf.}.

REMARK. If A,BEN, N, <(H(x),€) then A+BNN =4+
4+ B)NN,

4.3. LEMMA. (1) F= satisfies Ax I**, 11, 111, IV, VI, VIL
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(2) If AIB&F*, |{4A VU B)%/(B)|® is countable, then there is x €(A)?,
x + B divisible by p* for every n, equivalently x EB, ;.

ProOOF. Probably well known (anyhow, it is true).

4.4. Fact. (1) F* satisfies Ax II.
(2) If 4; (i 2 ) is increasing continuous, 4; €, A4, (4))5 € 44, then
Ay C A,

Section 5. A-sets and A-systems

5.1. DeFINITION. (1) For a regular uncountable cardinal A ( > R;) we call S
a A-set if:

(a) S'is a set of strictly decreasing sequences of ordinals <.

(b) S is closed under initial segments and is non-empty.

(c) fornE€S, if W(n,S) o {i:n*(i)E€S} is non-empty then it is a station-
ary subset of A(n,S) &f Sup W(n, S) and A(n, S) is a regular uncountable
cardinal. Also A({ ),S)=A4.

We sometimes allow 4 = 0, then the only A-setis {{ )}.

(2) For a A-set S, let S; (=set of final elements of S} be
{(nE€S:(Vi)n (i) &S} and S; (= set of initial elements of S} be § — §; (so
S;={n€S:A(n, S)=0}). Let £(S) be Ig(n) for n€S; if all n €S; have the
same length.

(3) Wecall Sa (4, k)-set if Sis a A-set and A(n, S) >k for n €S,.

(4) For A-sets S', S we say S' = S5? (S! a sub-1-set of $?) if S'C S? and
Aln, SY) = A(n, S?) for every n €S' (so S} = S' N S$?). Clearly < is transitive.

(5) We say that “for almost every n €S[nESJP...” iff for every S'=<S
some n €8’[n €S satisfies P.

(6) Forn={(ag...,a)letnt*=(ag...,am_y, an+1).

5.1A. NoTATION. In this section S will be used to denote A-sets.

5.1B. REMARK. Sometimes we can change (a) to “A(n | [, S)>A(n I m, S)
for | <m =lg(n)”, but we found it less useful.

5.2. CLamm. (1)Sisai-set, €S, thenS™ = (v: p*vES)isai(n, S)-set
and A(v, S") = A(n"v, S).

(2) If A > R, is regular, W C A is a stationary set and foreach €W, S?isa
As-set where 1; is a cardinal =dJ (possibly 4;=0, S°={( )}) then
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S‘l—c—f{( YYU{(F)"n:nE€ES’ and SEW} is a A-set. In this case
A6 n, S)=A(n, S®) for EW, nES°.

5.3. Cramm. (1)If SisaAi-set,. A(n, S) > i for every n €S, (holds always for
k = R,) and G is a function from S;to x, then for some S' = S the function G is
constant on S{.

(2) If S is a A-set, k a regular cardinal (V7 ES)A(n,S)#x) and G is a
function from S to k, then for some S'<S and y <k for every n€S',
G(m<y.

(3) If h is a function from S; to a set K of regular cardinals and
(VNES) Ncyny An 11, 8)# h(n), and G is a function with domain
S;, G(n) < h(n), then for some S’ = §, there are ordinals o, < kfor k €K, such
that for n €5f, G(n) < ayyy

(4) If h is a function from S; to ordinals, S a A-set, then there are a A-set
S’ = Sand k, m, h such that

(i) forevery n€SE I(n)=k;

(ii) if n,vES, ntm=v!mthen h(n)=h(),

i) if ptm#vim, n€S, veS;but ntl/=vtlfor l <m, then h(n)+#

h(v); moreover (if m > 0)

nm—1D<vim—1)=h(n)<h@).

(5) For a given A-set S and property P the following are equivalent:

(a) for almost every n €S, P(n);

(b) there are closed unbounded sets C, of A(y,S) such that
(VN ESYArcin 1) E Cyr— P()].

5.4. DEFINITION. (1) A A-system is 8 = (B,: n €S,) where:

(a) Sis a A-set, and we let S, = com(S) & (n*(i): nES;, i <A(m, S)},
(b) B~y € B~y when n €S, i <jare <A(y,S),

(c) if & is a limit ordinal <A(#, S) then By~ = U{B, )11 <6},

(d) |Byiy) <An, S) for i <Ai(n,9d).

Note: n€S.=n* €S..

Section 6

6.1. DEFINITION. Assume A, B, 4 + B C,, B* we say that &= (B,: 1€
S.) is a A-witness for (4, B) if:

(a) A is regular uncountable or 4 = 0,

(b) Sisa A-set,
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(¢) (B,:n€ES,) ai-system and let B, ,=Band forn€Ss, B, C A4,

(d) (U, <ign Byri)® is a pure subgroup of 4 + B,

() (B, N U, i) By11)* @ pure subgroup of B, (eq. of ( U, ;¢ By11)¥),

(f) for n €S; there is x, €EB,, x, & (U, <ipm) By11)® + (4 + B)[ p], (equiva-
lently, px, & U, B,11)®8, X, € (Upigm By .

6.2. LEMMA. Suppose A, B, A + B are pure subgroups of B*. If there is a
A-witness B = (B,: n€S,)) for (4, B) then (4, B) & F*.

ProoF. Suppose (4, B)E F™, let u be regular large enough, x € H(u). We
choose by induction on / ;€S and N, s.t. (letting B, ,, =B + A):

(D) mo=( ) lgm)=Lm=ny !l

(2) xEN, < (H(p), €), N, ..., N EN, .}

(3) NN A(n,, S) is an ordinal a;, #,,, =15/ {a;) ES.
There is no problem to do this.

So for some k <0, n, €S;. We prove, by inductionon /=0, ..., k,
#) (@ (BU U<, (N, NA)*C 4 +B,

() (BU U, ,(N,NA)EN (B, U -+ UB,  UBy)*
=(B,U ---UB, UB,)t

For (x) (a), use 1.4(1). For (x) (b), look at (3) above.! For / =k, we get
(as px,, € By — (U, < B, )¢ that

Micte
Pxy €(By,U - -+ UB,)*
On the other hand:

cl

cl
x,,e<Bu U B,,k,,> =(B, U ---UB,,k)°‘g<BU U (N,nA)>
1=k 15k

So x, show that

<B uU mN,)>g¢_spA +B.

1=k

tWe prove by induction on /. For / =0, check. Suppose x€(B U U,<;(N; N 4))% and x €
(B,U -+~ UB,_,U B, So for some yEB, x, €N, N A we have x =y + Z x;. As
XE(Byy U +++ UBy 1 UBy)f C(By U -+ UBy_ U By )*

hence for some ZEN N B,, ...,z (ENNBy; ), LEN,NBy y, i=2Z2z. Now x=Zx]
where x; = x, + z, if i </, x{ = z,. However N, N B;:_,= B, so x{€B,,. As | >0 we can use the
induction hypothesis on / for x — x/.
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Hence this shows (4, B) is not st. psf.

Section 7

7.1. CLaM. Suppose (4, B)& F*, B C, A C, B*then thereis 4,, B C 4,,
A p]l=A[p] and (4, B) has a witness.

PROOF. As (4, B)& F*, by 4.3 and [Sh 2] there is (B,: 1 ES,) s.t.

(a) A =0 or A a regular uncountable cardinal,

(b) Sisa A-set,

(c) (B,:n€ES,)isaA-system, we let B, ,=Band B, C 4,

(d) ( Ulilg(r]) Bntl)g gprAa

(e) Br) N ( Ulilg(n) BnN)g gpr Br]’ ( Ul;lg(n) qul)g,

(f) for n €S; there is x, € B+, X, & { Uy sigen Brtn)® % E (U sigm Byni) .
Let D, = B,[ p]. Easily (by (¢)):

*) (U By 1r1-{ U Dy

1=1g(n) 1=lg(n)

We now define E, for n €S, by induction (with the order: inclusion on
) 1<1g(n B,,”) s.t. (lettmg E( y = B)

(A) ( Ul;lg(q) EnH)g gpr B*,

(B) (U, zigm Ent) 21 = (Ui sigem Do) &,

(C) (E,:n€ES,) willbe a A-system (set E, ,=D, ),

(D) if n €S, then E,+/{ U, <iy() Eq11)® has an element x of height infinite and

order p2.
In limit stages and in the first stage, there are no problems. Dealing with

v successor necessarily v =n*, n of maximal length. Defining B,+, if n &S
use 2.10. If n€S, wlo.g px,€( U,g.g(,,, B,11)® so by purity there is x; €
B, N (U< By} px;, = px,so w.lo.g. px, = 0 hence x, € D,+. So for some
1t € Uicigon Botr)® ht(x, — Zpcn 1) Z 11, 50 W.LO.E. pt,, = 0 50 ht(t,,) = m.

Now when E, , (I = l(n)) are defined, choose s, € ( U <iem Eqti) % D", = 1,
and let B}+ = (2,2, p"~"s,: m < )¢ and complete as before (using 2.10).

7.2. CoNcLUSION. IfA =min|p"G|, G C, B*is not the sum of cyclics, G
is not torsion complete and even forno 4 C, G, |4 | <4, is G/A¢ is torsion

complete, then there is H C,, B*, H[ p] = G[p], H, G are not isomorphic.

PROOF. By 2.7, there is H,, Hi[ p] = G[pl, H, C,. B*, (H,, {0})EF>.
By 7.1, there is H, C,, B*, Hy[ p] = H[ pl, H, has a witness.
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By 6.2, (H,, {0})€& F* together H,, H, are not isomorphic so G is not
isomorphic to H, or to H, (or to both).

Part B
Section 8

8.1. LEMMA. Suppose G C, B*, A, ,[4.(G)=A*G)], MG)<|G|,
moreover 2279 < 216! and G # G°. Then Conclusion 7.2 holds (we really have
2161 non-isomorphic ones).

PROOF. We can find x*€G — G, hence x*€G® — G, x* # 0 = px*. Let
{tr:i <A, (G),n<w}beabasisof G(p" 1] =0+ p1). Let Go= (i <
A (G), n <w).

Let {s,:7<i(*)} be a maximal subset of G[p?] s.t. Z, es,EG[p]+ G,
implies e, € G[ p} + G, (for each i). Clearly |i(*)| = |G|.

For T C{i:i <i(%)}, let

{Sh leT’
T
s;+x* €T,

Ar S CLp+ G pl + (sT: ¢ <i(s))"

As in 2.9, there is Hy C,, B*, H;[ p?} = Ar hence H;[ p] = G[ pl.

It suffices to prove that no (2" * of the groups H; are isomorphic.

Suppose {Hr,: i <(2*"%)*} are isomorphic, T; # T,fori #j. Let h;: Hy, —
H;, be an isomorphism. For some i#j, h G[p*]=h1Gy[p?]. So
hi'h;: Hy, — Hy; is the identity on Gl p?]. Choose yET, =y & T;. Now s/ is
necessarily sent to itself being the limit of a w-sequence from Gy[ p?]. But
s/+ —sT # x” which is not in Hy,, a contradiction.

8.2. LEMMA. Suppose G C,, B*, (G, {0})& F*, A =Min, | p"G|,B C,, G,
|B| <A, G/Bg is torsion complete of power A, then there is H C ,, B*, H[ p} =
Glp), H= G provided G.C.H. holds (or at least [u <A =2F = 1)).

ProOOF. Let A = |p"™®G|, so for some G,, G, G =G, ® G,, p"VG,=0,
|G,| =4, w.log. BC,G, |B| <A, G/B¢ torsion complete.

As G is not torsion complete there is x €EBY — G, hence x*€B% — G,
px*=0# x* Let {1': n <w, i <{,} be a basis of G (¢ of order p"*') where
{t!:n<w,i<{,}is abasis of B.
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We can find infinite vCw s.t. (|& —{,|:n€v) is non-decreasing,
nnEvlén - Cnl =j'a V= {nl:l<w}a n; <ni+l, n(l)=nl- Let K = |én1 - Cn,l;
and let ,: T, 2, 56— {i: {4y = 1 <&} be one to one. For n €11, , K; let

o= X PTG,

nazm
n Slgln)

For some s} €(B)¢
zn =y +5EG.

Let {x;:i <i(#)} S G[plbes.t. {z): nEI,, K} U {x,: y <p(x)} is a basis of
GIpYBIp)® &, (11"

Let So,, = 2(,,‘,')5% a(’l,_,') p"t,-", W,, c {(n, l) i< C,,, n <w}, W.l.O.g. X* =
Zc,p'ty. For S CI, ., k; let Hg be generated by

B U {y,’," + XY al,p"™:nE€ES,m <w}

(ni)Ew,

v+ X ahapt T+ Y . pt €S

(n.)EW, nzm
nzm
u nell x
l<w
m<w

U{ P b{,..np"""t,-":m<w.y<Y(*)}

nzm

(n.i)
where x, = Zbj,;, p"~"t!.
For every S this is o.k.

Case a; ABl=}
In this case

8.2A. Fact. We can find (g,:n€M,.,k,), g a function from B U
(7, :n<w} into g such that for every function g:BU
{trh:ve U, ., ., K} into G for some n €M, k;, &, C §.

Pf. Like [Sh 3, VIII, 2.6].

Now we can choose S as follows: for each n €11, ., k;, the truth value of
“n €S” is determined such that no isomorphism from H onto G extending g,
exists. This is easily done, and clearly sufficient.
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Case B: 2 strong limit singular. Necessarily cf 4 > R,. We use [Sh 4, 2.5]
and do the obvious things.

8.2A. REMARK. We may be tempted to use in case (o) A = A% (instead of
A = A<*), but by [Mk-Sh] 5.3 this is problematic.

8.3. REMARK. If A is regular, {d <A:cfd = N,} is not “small” (for defini-
tion and references see [G-S]), we can get the result.

If Ais singular, [B| <p <k <4 =2#, {6 <k:cfd = w} not small, we can
still get the result (see [Sh 5, XIV, §1]).

8.4. FAcT. We can weaken the hypothesis in 8.1: G C,, B*is not the sum
of cyclics and is not torsion complete, A =Min,_,|p"G| > i¥G),

{th:n<w,i<¢,}CG,abase,
Ky <Kpy <@ forn<aw,
Kn '—<"‘ Kn+l é'l*(G),

h,: T, 6,—~&, one to one, and for n €I, ., x, there is x, €G[p)}, x, =
Za'p,

{th:alp"t} #0} N {t,’,'(,, vE[l x,n <w} C {thigtm : n <w}
i<n

and is infinite.

ProoF. The same proof essentially as 8.2 (really {#}:a!p™! #0} N
{thintny : n <w} is infinite, k, > R, suffice).

8.5. ConcrusioN. (1) (G.C.H.) If G C,, B* is not s.c. nor torsion com-
plete, then there is H C . B*, H[ p] = G|[ p], H, G not isomorphic.
(2) Instead of G.C.H., “(V4) {0 <A* :cf A = Ny} is not small” is enough.

ProofF. (1) W.lo.g. 4,(G) =< A*G) for each n. [Two possibilities:

(A) all non-isomorphism pf work if we say not “isomorphic even if we add a
bound p-group”.

(B) In(x), Vn = n(x),1,(G) < A*and make p"*'G, p"™H non-isomorphic.
Now the proof is just using 7.2, 8.1, 8.2 — they cover all cases.]

(2) For this observe

(A) IfMin, | p"G | Zu >Min,, Z,.,, 4,(G), uregular, thenthereis H C , G,
|p"H| Z u, Min,(Z,- ., 4,(H)) has confinality w [prove by induction on
Min,, (2, m A.(H))].
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(B) The proof of 8.1 gives: if u < Min, 1p"G|, HC4G,
- Min,, (2,5 . As(H)), u* <21, then the conclusion of 7.2 holds (we get
really 2'#! non-isomorphic ones).

REMARK. We cannot just omit G C H by [Mk-SH] §6.

Section 9

9.1. REMARK. An alternative definition of “H is direct” is: if B*€ H(u),
N, < (H(p), €), Nicw NJEN,, then (U, (N, N H))§ C,. H (similarly for
“(H, H)) is direct”).

9.2. THEOREM. If G.CH,, G C,, B, A is regular,
(VKK CGA|K| <A—G/K not sum of cyclic], G not torsion complete,
then there are Z 2* pairwise non-isomorphic groups H, H C, B*, H[p] =
Glpl.

REMARK. (1) Under ¥V = L we can get rid of “A regular”. We should correct
case (B) as in 8.2’s proof. It is enough that {6 <A* :cfd = w} is not small for
every 4.

(2) By 9.2 and compactness for singular, if in 9.2 A is singular, the number
is =4>2.

Proor. W.log. |G| =Min,.,|p"G|. Clearly there is G, C,, G, |G,| =
A, (VK)K C G, A |K| <|G,|=G,/K not sum of cyclic].
. . def .
By applying suitably compactness for singular, we getu = |G| = |G| isa

regular cardinal.

Case A: Forsome HC G, |H| < |G|, G/H is torsion complete and of
power |G |.
The desired conclusion follows by [Sh 4] and the proof of 8.2.

Case B: For some HC, G, |H|<|G|, |(H)$|=|G| or even just
|H| < |(H)81 = |G| =2'¥. Then use the proof of 8.5(2) (or 8.1).

*x %k X %X X

Let d;f Min{ | K|: G/Kis sum of cyclic, K C,, G}. Soif 4 is not strong limit
singular, we can assume that 2* = 4.

Case C: Not case A, not case B.

OBSERVATION. W.Log KCGA|K| <u= |(K)¢| <pu.
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Really “= |(K)&| = u” suffices, and this follows by GCH. For trying to
weaken the assumption GCH, note the following. If 2* = A, as not case B,
KC,GAlK|Zpu=|(K)| =4, sowlog G C,G.

If A is strong limit singular g, o M) < and
KC,GAlK|2u=|(K)| =4). So if for some G,C, G, |G| =u,
(VK)K C,, Gon |K| <p—G,/K not sum of cyclic], we finish. Otherwise
there is a minimal u, = u

G:C, G, |Gy =y, (VK)KC, Gin|K]| <p,— G/K not sum of cyclic].

By 1.x u, is regular, and easily [K C,, G A | K| <u,= [(K)& | <], so we can
use u, instead u.

If A is not strong limit we have assumed 2* <4, and by not case B,
[KCGA|K| =u=|(K)¢| =u). Trying to replace u by u, o u* we succeed
in the previous case except when x4 = 4. By then “not case B” gives the
conclusion.

OBSERVATION. W.lo.g. if u <|G|: (1)) (VK C,,, G)[IK| <u—G/(K)§ is
not torsion complete] and (ii) G, C, G.

PROOF OF THE OBSERVATION. Define by induction on { = u, G}, s.t
@) GIC G, |G}l =u,
(b) Gf is increasing continuous (in {),
(c) G?= G, is not s.c. (hence G, will not be),
(d) GI**'=(G¥)¢,
(e) Gi***C,. G,
(f) G***C, G, G %G+ is not bounded.
Note: G? C,, G,. Now replace G, by Gt.

OBSERVATION. W.log. 4 =|G|=G; =G, hence (i), (ii) alone hold by
7 case A, " case B (so (i), (i1) always hold).

Let (B,: nE€S,) be a u-system satisfying (a)—(f) from the proof of 7.1 with
B=B ,={0}, B, ,= U, B, =G, and

8 U(B,:i<4,(n,8)}CB,

(h) G/B, is A({a), S) — F*free, B+, CqG. By [Sh 2] w.lLo.g. there is
m(#) s.t. for every n €S,, cf[n(0)] = A(n  m(x), S).

Let {t!:n <w, i <pu} be abasis of G, and w.l.o.g. foraEW(( ),S), ais
divisible by |a| and {f/:n <w, i <a} is a basis of B, ,, and there are

C{ff:n<w,i<pu)forn€Ss.t. U,isabasis of B,/ U, iy, B,1;- Now for

each 6EW* ={a<pu:a€W( ),S), a=supan W(({ ),S)} choose a
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closed unbounded C; Cé N W({ ), S)of order type cf 4. We can assume that
(e)W* is a set of inacessible, A({8),S)=4 or (BYEW*=cfd =k,
(K <A(( ), 8 A(S), S) =k,

In case (a) we know {0 € W*: W* N Jis not stationary in  } is stationary so
w.l.o.g. (*) for d € W*, W* N § is not stationary in J, hence w.l.o.g. each C; is
disjoint to W*,

We shall define for every W C W*a group HY C . B*, H¥[ p] = G[ p] s.t.:
(D, — the club filter) W, # W, mod D, implies H"' &= H"",

We now define E;” for 7 €S, as in the proof of 7.1 but

if « & W, we define E(, ,, as in the proof of 2.7,

if € W, we want to define E)'((a) En €S) as in the proof of 7.1, however
we have a problem wanting to reconstruct W/D, from H”. We do not want
that what we do for («) will spoil what we have done for any f <a, S & W.

Assume first that m(x) = 1; w.l.o.g.

(»xx) for every a {t/:n<w, i <y,} is a basis of B,, y,+ ¥x <V.4+,; for
every I:

(js=i,n<o)gp+(tj<n <o)t j<i+w,n<w)d

and say z; witness it, pz; = 0.
Now building E[}, -, we make them direct over B,,,, but we use z essentially
like in 2.7.
The case m(x)> 1 is more complicated — we should imitate {Sh 2].
Completing the definition of H” after (E;”; n €S) was defined, is as in 2.7.
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