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ABSTRACT 

Let B* be a separable reduced (abelian) p-group which is torsion complete. We 
ask whether for G _cpr B* there is H c_pr B*, H[p] = G[p], H not isomorphic 
to G. If G is the sum of cyclic groups or is torsion complete, the answer is 
easily no. For other G, we prove that the answer is yes assuming G.C.H. Even 
without G.C.H. the answer is yes if the density character of G is equal to 
Min~<,o I p~G l, i.e., 

Min Ip"G] = M i n  ~ l(p"G)[p]/(p"+tG)[p]t. 
n < t a  m n > r a  

Of course, instead of two non-isomorphic we can get many, but we do not deal 
much with this. 

NOTATION. A group will mean here an abelian group. 

We assume knowledge on separable reduced p-groups from Fuchs [F]. 

G R O U P  THEORETIC NOTATION 

P 
B* 

B* 
A,B,C,G,H 
G ~ H  

a fixed prime (natural number) 

a fixed p-group which is the sum of cyclic groups 

the torsion completion of B* 

subgroups of/~* 

G is a subgroup of H 
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G _pr H 

G[p] 

X, y,  

( A , B )  g 

A + B  
A ~ B  

G is a pure subgroup of H 
(the socle of G) is {x ~ G : px -- 0} 
elements of  B* 
the subgroup of B* which A U B generates 
We usually say "sum o f . . .  groups" instead of "direct sum 
o f . . .  groups". 
( A , B )  8 

is the direct sum 

Explanation of  Proof. We have two kinds of H (st. psf and direct); they 
usually exist and (except for the sum of cyclics) are contradictory. However, 
each has various obvious variants (and we can mix them, e.g., in order to get 
many non-isomorphic H's). 

OTHER NOTATION 

a , b , c , d , e  
n , m , k , l , r  

i , j , a ,  fl, y, 6, e 
2,1t, x , Z  
(Xo . . . . .  x . )  

) 

lg 

integers 
natural numbers 
ordinals 
cardinals 
means a sequence 
the family of sets with transitive closure ofcardinality < 2; 
we do not distinguish strictly between this set and the 
model (H(2), e) 
elementary submodel 
"the length of" 

Part A 
Section 1 

1.1. DEFINITION. (1) ForA _ B*, 2,(A) is the dimension ofp"A/p"+lA as 
a vector space over Z/pZ.  Similarly for groups isomorphic to such A. 

(2) 2*(A) = Min, E,<,,<o,2,,(A). 

(3) We call A wide if [A I + Ro = 2*(,4) + Ro. 
(4) We say (B, A) is wide if: A + B/A is wide and A __ pr A + B. 
(5) We say (B ,A)  is very wide if there is C =  ( t r " i  < 2 ,  n < c o )  and 

BI, A c__ B~ _c B + A, s.t. A, B~ are pure subgroups o fB + A, p" + It: = 0 v ~ p"t~, 

{t:: n, i} free (see 1.2), and B = BI @ C and ( 9 m)2 >_- [p"(BI/A)]. We say A 
is very wide if(A, {0}) is. 
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1.2. DEFINITION. (1) A subset of  A, { x , : i < a }  is free if Y,e;q=O=* 
At e,xi = 0. 

(2) A basis of  A is a maximal free subset ofA - pA (it is a basis of  a subgroup 

of  A which is dense, and called basic). But for A _C B*[p] we sometimes use a 

basis of  A as a vector space over Z/pZ. 
(3) hh (x )  = sup{n : ( 3 y ~A)p~y = x}; ifA = B* we omit it. The function 

h h  defines a norm on A; we know (see IF]): B* is the closure of any basic 

subgroup. Note that A C_ pr B = hta < hts. 

(4) A~ ~ = c l s ( A ) = { x ~ B : A ~ ( 3 y E A ) h t ( x - y ) > n }  (when A _ B ) .  If 

B = B* we omit it. I f X  ___ B, X~ ~ = ((X)g)~. 

1.3. THEOREM (see, e.g., Fuchs [F]). 

(1) Every A has a basis. 
(2) A bounded pure subgroup of A is a direct summand of  A. 

1.4. FACT. Suppose B*EH(2) .  If B _CprA + B ,  N < (H(2), ~) ,  A ~ N ,  
B E N  then B Cp~B + A N N Cp~B + A. 

1.5. DEFINITION. Let { t i : i<i( , )}C_A,  x E A ,  a~EZ, we say x =  
Zi<,,)aiti if, for every m, { i : h h ( a i t i ) < m }  is finite and 

h h ( x  - Z{a~t~:hh(aiti) <= m}) > m. 

1.6. CLAIM. (1) If {t~: i < i(*)} ___ A then Zi<~¢.) a~t~ (in A) has at most one 

value, and ifA ---ct/~* [see 2.1(2)] and Y,i aiti satisfies the condition above then 
the sum has exactly one value. 

(2) If {t~: i < i(,)} is independent in A, each x has at most one represen- 

tation. 
(3) If {t~ : i < i(,)} is the basis of  A then each x CA has one and only one 

representation, the canonical one. 

Section 2 

2.1. DEFINITION. (1) B C_spA means B C_prA and (B),~ I _ B +A[p] .  

(2) B _ColA means B _CprA and (B),~ I = B. 

2.2. FACT. (1) I fB  C_prA C_pr/~* then: 

BCspA i f f B d n A  C_B +A[p]. 

(2) If B __.d A then A/B can be embedded into B* (so we can apply to it 

appropriate properties). 

(3) __. p~ is transitive as well as ---d. 
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2.3. CLAIM. (1) IfAi is C__ pr-increasing (for i < a), A0 C_ ,p Ai for each i, then 

A0___~p U,<oAi. 
(2) For everyA, {0} C_spA. 
(3) For everyA,A _CspA. 
(4) IfA C_~pC, A C_B C_ CthenA C_,pB. 
(5) A C_cIB=oA C_spB==*A CprB.  

(6) A C_spB -cl  Cthen A Csp C. 

2.4. DEFINmON. (1) We call A ___ B* st. psf. (strongly pseudo-free) if, when 
for every ;t large enough (so B*~H(2) )  for some 2 ~ H ( 2 ) ) ,  if k < t o ,  
No, N~ . . . .  , Nk_~ are elementary submodels of H(2), ~ belongs to each Ni, 
At<m<k NtEN,n then ( (-Jt<k (Nt N A )) C_spA. 

(2) For B C A + B c_ B* we define "(A, B) is st. psf." similarly only in the 
end 

B + (  t<k ['j Nt f)A)C_spB +A. 

2.5. REMARK. (A, {0}) is st. psf. iffA is st. psf. 

2.6. LEMMA. Suppose G c_ p, B*, and G is very wide. Then there is H such 
that: H C prB*, H[p] = G[p] and is st. psf. 

2.6A. REMARK. We can have (H, B) very wide, B ___¢~ G and get H __ pr B*, 
H[p] = G[p], B C_ H, and (H, B) is st. psf. 

Pf: So G --- B l ~) B2 @ B3, B3 bounded, 

B2= (~ (sF) g, 
i<2 

(s~)* cyclic of order p" + ~, and I B~I ~ A. We can forget B3 for notational 
simplicity. 

Let {tf : n < to, i < ;t, } be a basis ofBi (p" ÷ Itf = 0 ÷ p"tf). Choose a basis I 
for B,[p] extending { p"tf" n < to, i < 2 , }  (as a vector space over Z/pZ), 

I = {  Y~ a~, , i ,p" tT"a<a( . )}U{p"t f 'n<to ,  i < 2 , }  
(n,i)Ewo 

and a(*) _-< 2. 
We now define H: 
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H = (tF: n , i ) ~ +  (s~ ' i  < 2 ,  n < t o ) ~  

( ,)' + Y, a~.~) p"-"t~ + 2 P"- " +~sg" n < to, ~ < o~(. . 
(n,i)Ew~ n > m 

n>m 

So {t/', s/'" n, i } is a basis o f  H .  Clearly H is as required, but  we shall check. We 

leave " H [ p ]  = G[p], H c_pr B*" to the reader. 

Let /t be regular large enough, so B*, B*, B~, B2, B3, B and 

(tf'" n, i ) ,  (s,"" n, i )  belong to H(/ t ) .  Let 

(B*, G, H ,  (tF" n, i) ,  (s~" : n, i) ,  17 

(n,i)~wo 

Suppose k < to, for l < k Nt < (H(#) ,  E) ,  17~Nj, and Nt ENm for l < m < k. 

We shall show 

/ )' ( ,)  U ( H n N t )  c_,pH. 
l<k 

The purity is easy: use 1.4(1) (inductively on k). So suppose x E H ,  so there are 

m,  ct o < • • • < c%_ t < c~(.), r0, rt, r2 < to and b~ ~ Z such that: 

x =  X b°q( X a(%,i) P"-mt~ "~- X P " - m + l s n ~ ' ~  X vq/tlltnl(q) "Jr . lq  X vq~2S"2(q)j¢ 
q<ro \(n,i)Ew.q n>m aq/ q<h q<r2 

as we can increase m,  w.l.o.g. (n '(qO, iq,) q~ W,~,. (n2(q2),jq2) q~ W~,,o for any qo < ro, 

ql < q,  q2 < r2. 
Let x E (  U j < k ( H  O N3) d. We want to prove x E (  U~<k (H  n N 3 ) +  Hip]. 

We can replace x by x - x '  i f x ' E  ( Ut<k (H  n Nt)) s.t So w.l.o.g, aq ~ Ul<k NI. 

t As I:'EN I, and as obviously {m:m<o~}C_N, for i < 2  clearly [iEN~s~NI],  
[i~N~t~ENI] and ifa <a(,), 

n>m 
and even [lENt n2~(&":n  <m)ENt] hence [iEN t n)~Z,>,.p"-"+ls~ENtl. Of course 
[zENt n H, bEZ~bzENt n H]. 
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Also iq $ Ut<k NI, jq q~ Ut<k Nt. So necessarily q = 0 = r2,* pm divides b ° (for 

q < r0);* so x ~B[p] and we finish. 

2.7. LEMMA. Suppose B c_d G, G c_ p~B*, and (G, B) is wide and for no 
C _ G, I C I < 2*(G), is G/(B + C)~ ~ torsion complete. 

Then there is H C_~B*, B C_ H, H[p] = G[p], and(H, B) is st. psf. 

P~OOF. Let {t~" i < ~,, n < co} be a basis of  G s.t. (tT" i < ~,, n < o9) is 

the basis of  B (so 

B • @ (t/') = 
n .< f~t/ 

~n < i <~n 

exists and is c_ p~ G, p~ + ~tF = 0 ÷ pnt~). Let 2, = I~, - ~, I, 2 ( . )  = Z,___m 2, for 

every m large enough. But for every m 

( 3 G ' ) I B C - G ' C - - G A G = G ' @  ,>_r~ (~ (t~)] 

~n<*<~n 

so w.l.o.g. 2 ( . )  = Z,<o~ An. 
Let { tr : ~, < i < ~n, n < w} U { Z~,,o a~=,~) pnt7 : a < a ( . )  < 2( . )}  be a basis 

of  G[p] over B[p] (as vector spaces over Z/pZ) (so a~,~)~Z, 
d e f  

w~ --- {(n, i)" a~,,) ~ 0} countable etc.) w.l.o.g. 0 < a~n,~) < p. 

Let, for z = ~ a~n,~)t~ E G ~, dom z = {tp" a~n,~)tF ~ 0}. We define, by induc- 
tion on a < a(.) ,  H~, Wo, y~ (n < co), w~, v~ s.t. 

(a) H~ is increasing continuous, 

(b) B C_H~ C_p~B*, 

* As x ~ (  Ut (H  n Nt)) cl and the w.l.o.g, above  and  as Art N H __. ( ( t r  : t/' ENI)S)~,  clearly (by the 
w.l.o.g, above) t~, 'cq) ~ UNt, ts~, ~(q) ~ UNt for q < rt, q < r2 resp. as {tr,  s m : n ,  m < o9, i < 2n, a < 2 } 
is a basis of  H.  

t Suppose pm does not  divides  b ° ,  then bop" - " + ls~, ÷ O. By the choice of  (s m : m < co, a < ). ), 
s~,, (for n > m )  does not  appear  anywhere  else and  is ° 

a~,oP + ~ Pw, , 
q<ro X(m,i)Ew~,n>m n>m 

hence appears  in the cannonical  expression for x.  Let us choose m ( . )  < o9 (so tha t  m ( . )  > m,  and  
p'~('~B 3 = 0). So there is x* E (  Ut (H O Nt)) ct, x - x *  divisible by pro(.). So s m~*~ appear  in the 

qa 
* n n * canonical  representa t ion o f x  by the basis {t i : si : n, i}. B u t x  = Z xt, x t E H  ¢q Nt, each x thas  a 

representa t ion  by {t~, sT:n ,  i} n N t. So necessarily s~l'~ belongs to some Nt, hence  a , ~ N t f o r  
some l, contradict ion.  
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(c) H a =  (B U {tr :  t?~Wa} U {y ; :n  <co,fl < a } )  g, 
(d) Wa is increasing cont inuous ,  I W.+ I - -  W a l  <-~ ~ o ,  W a  CC. { t i  n : n < to, 

(e) Z~.,~)~w. a~.,i) pnt~ ~Ha+ I, 
(f) H.[p] C G, 
(g) Wo={tF:n <co, i <~.},  
(h) d o m  y." _ W.+,, 
(i) y~ = Zt.,~)~.. aF.,~ ) p"-mt F for m = 0, 

(j) py"~+' - y " ~ ( t F : ( n ,  i)E Wa+l)', 
(k) for n > 0, d o m  y~" - Wa is infinite, 
(1) for n > O, y"~q~ (B, (tr" tF E W2)=) = + G. 
Fora=O: Ha=B,  W a = { t ~ : n < t o ,  i < ( . } .  
For a limit: Ha = Up<~ H a, W. = Up<a wp. 
For a+  1: Let W'~= W.U {t,":(n,i)Ewa}. By hypothesis  

G/(B + (t~" tp E W~))~ is not  tors ion complete .  
So there is a countable  v. c_ {(n, i) : n < to, i < ~. } and b~", 0 < b/" < p (for 

(n, i )~ vO, such that: 

b? p"t~ q~((B + {tp. t ~  w'))=)c~ + G 
(n,i)Ev. 

(and is well defined). W.lo.g. va is disjoint  to IV'. 
Let 

and 

ym= y. bFp.-m+,tF + y~ &p. -mtr  
n > m (n,i)Ewo 

(n,i)E v. n > m 

Wa+, -- {tF : (n, i)~v~} U Wa. 

It is easy to check that  this works, H --_prB* and H[p] = G[p]. Let us show 
that  H is st. psf. 

Suppose k < o9, # regular large enough,  for l < k, Nt < ( H ( # ) , ~ ) ,  Nt ~N,. 
for l < m < k  and BI, B2, B3, B, G, (tT"n, i < ~ . ,  n < w ) ,  
(Z~..~)~w. a~,~)p"-mt~' : a < a ( . ) ) ,  (Z~.,,levo b~.,~)P"-r~t~' : a < a(*)), etc. belongs 

to each Nt. 
We want  

( )' (.) B U U (H n NI) ~p H. 
l<k  
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The purity is easy: use 1.4(1). 

Suppose x E  (B U Ut<k H N N~)~ ( C_ H). So let, for some m, 

x = y  + ~ cqy~ + ~ cqti~ tq] 
q<ro q<rt  

(where r0, r~ <09 ,  Cq, Cq~Z, iq = i(q) and y ~ B ) ,  w.l.o.g, t~t,q,)~dom yq and 

iq, > ~ for q < r0, ql < r~ (as we can increase m). 

We want to show 

( )' x E  B U  U ( H A M )  + H [ p ]  
I<k 

so we can replace x by x - x "  if x ' ~ B U  U l < k ( n O N l ) .  So iq~Nt =* 
(n (q), iq) ~ N/=~ t,", <ql ~ H N Nt =~ we can replace x by x - cqt~(~q] ~. So w.l.o.g, for 

q < r~, iq ~ Nt. However  for any z E B* 

z E B U  U, ( H n N l ) = ~ d o m z C { t F ' i < ~ , o r i < ~ , a n d i E , < k U  Nt} 

hence z E (B U U / H  n Nl) ~ =~ dom z __C {tT" i < ~, or i < ~,, i E UNt  }. We 

can assume Aq<r, n(q) < m (as we can increase m). 

So as x E (B U Ui  H G Nt)~,  and tin (q) E d o m  x, and iq ~ UINI necessarily 

cqt~ (q) = 0, SO really r, = 0. 

Also i faqENl,  y , ~ N t  n G, so we can replace x by x - Cqy;~. So w.l.o.g. 

Aq <r0(~q ~ Nl). 
If  there is q s.t. pQy:  ~ 0, w.l.o.g, a0 < a~. • • < aro- I, and let q = q ( , )  be a 

maximal s.t. pcqy. m v~ O. 
So q ( , )  < q < ro ==~ pcqy: = 0==,cqy: EH[p] = G[p]. As (v~ : a < a ( , ) )  E 

Nt, v~ not a subset o f ( a n d  even disjoint to) U~<~ v,, clearly 

So as dom x __ ( Ut  (Nt n {t~ : i < n, i}) U W0, clearly v.~., n dom x = ~ ;  now 

comput ing formal sums, looking outside W~,,., we easily get for some m >= 1 

y~,., ~ (B U {tT:t[' ~ W' . , } )dH[pl  

and so to 

' ~ (B  U{ t  7 t r ~ W . , , . , } ) d + H [ p l  . y 
~¢,( . )  

Hence there is no q < ro, pQy~ ÷ 0 so x ~ H [ p ]  and we finish. 
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We can note also 

2.8. DEFINITION. G _ pr B* is called direct if G has a base (t,"" n < o9, 

i < 2,} s.t. for every x E pG there is y ~ G, py = x and dom x = dora y. We 

define similarly B ---¢l G when (G, B) is direct: if G/B is. 

2.9. CLAIM. If G _ pr/3", then there is H C p~B*, G[p] = Hip]  and H is 

direct. 

PROOF. Let {t~ 'n <o9, i < / . , }  be a base of G. Now every x ~ G ,  
(ht(x) = m(x)  + 1) has a unique representation x = Z, =>m(x) a(~,,)p"-"(x)t,", 

( V n) ( 3 <~oi) a(,,o 4: 0; w.l.o.g. 0 _-_ a(n,i) < P'(*)+ 1, dom x = {t,"" a~,i) ~ 0). 

Let { x ~ + ~ , , ~ ( p " t ~ ) g ' a < a  *} be a basis of G[p]/@,, i(p"tp)  g (so 

m(x  ~) = 0) (as a vector space over Z/pZ). Let H be the subgroup of B*- 

generated by 

{ t F : n , i } U {  Y~ a(X, i )p"-mt~ 'a<a*,m<og} .  
n > m  

(n , i )Ew.  

2.10. CLAIM. Suppose G~ ~----pr G ~.~_pr ~*, Hi Cp~/~*, Ht[P] = Gl[p], 
[H~ n G ~ c_ G~]. Then there is H, H~ C H C_ B*, H[p] = G[p], H n H~ ~ = H~, 
and (H, H~) is direct. 

PROOF. Let {tT: n < w, i < ~,} be a basis of G~, {t~" : n < 09, i < ~,} be a 

basis of G. Let {Z(,,~)~o a(%,o p"t~ + G~[p] @ t~),,~ ( p"tr )g" a < a(*)} be a basis 

of G[p]/G~[p] + (~)(,,~) (p"tF) g. Let H b e  

( )' H ~ + l t ~ ' n < o g , ~ , < = i < ~ , ) * +  Y, a ( , , o p " - ' t F ' i < a ( . ) , m < o 9  . 
(n , i )E won > m 

2.11. REMARI¢. (1) We can prove that if H is direct and not the sum of 

cyclics, then H is not st. psf. This is really the content of  6.1. 

(2) Note that if H, G are pure subgroups of/}*, Hip]  = G[p] then His  the 

sum of cyclics iff G is the sum of cyclics. 

Section 3 

Context U is a fixed set (we shall deal with subsets of it) and F a family of 
pairs of  subsets of  it; we write A/B ~ F or say "A/B is free" or "A is free over B 

when (A, B)EF.  X will be a fixed cardinal. 

CONVENTION. Adding a superscript + to an axiom means that whenever 
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"A/B E F" or its negation appears in the assumption, then we demand B to be 
free over ~ .  

Ax I**: I f A / B  is free, and A* c_ A,  then A*/B is free. 
Ax II: (a) A/B  is free iffA U B/B is free. 

(b)~ A /B  is free i f  l B [ <It ,  A C_ n .  
Ax III: I f A / B ,  B /C  are free and C c B ___ A then A / C  is free. 
Ax IV~j,: IfAi (i < 2 )  is increasing, for i < 7  < 2 ,  Ar/ Uj<~Aj U B is free, 

2 < x ,  I U~<~Ail < I t  then Ui<~A~/B is free. (IV u will mean IVuj, and IV 

means IVy.) 

3.1. DEFINITION. We say "for the x-majority o fX  _C A, P(X)" if there is an 
algebra A with universe A and Z functions, such that any X c_ A closed under 
those functions satisfies P. We can replace X C_ A by X E  ~(A)  or X E  ~<a(A): 
alternatively we say {X _C A : P(A )} is a x-majority. 

Ax VI: IfA is free over B U C, then for the x-majority of X ___ A U B U C, 
A N X/(B A X) U C is free. 

Ax VII: If A is free over B, then for the x-majority of X ___A U B, 

A/(A n X) u B is free. 

CONVEN'rIoN. (1) We are always assuming Ax IIa, III, IVa, VI, VII; others 
will be assumed explicitly, except when we mention some of  them but not 

others. 
(2) Ax IIa means II(a) + II(b)a. 
(3) Ax II(b) means Ax II(b) u for every #, and Ax II means I I (a)+ II(b). 

Similarly for the other axioms. 

3.2. DEFINrrIoN. A/B is x-free if: ~ :>Z and for the x-majority of  
X C_A U B which has power < x ,  A f3"X/B is free or x < Z  and 
[A' ___ A ^ IA'I < x=='A'/B is free]. 

3.2A. REMARK. Note that i fAx I** holds, then A/B is x-free ifffor every 
A' ___ A ofcardinality < x, A' /B is free (so the distinction between the two cases 
disappears). It can easily be shown (see [Sh 1]) that: 

3.3. CLAIM. (1) [Ax II (a), (b)a, III, IVa+, VI, VII and 2 >X].  Suppose 
A = U~<~ A~, A~ increasing continuous, I Ai[ < 2, 2 regular uncountable, then 

A/B  is free ifffor some closed unbounded set C _ 2, C U {0} = {6, : i < 2 } ,  6~ 
increasing and A6, +,/A6, U B is free for each i i f fA/B is ;t-free and { i : A/Aa U B is 

2-free} contains a closed unbounded subset of 2. 
(2) If I h I = 2 we can omit IIu.. 
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Also by [Sh 1]: 

3.4. CLAIM. [Ax I**, II(a), III, IVu÷, VI, VII]. I fA/B is 2-free, X < g  < 2 ,  
thenforeveryA' C_ A, IA l <# there i sA" ,A '  C_A", )A"I < IA'I + )LA"IBis 
free and A/A" U B is 2-free. 

3.5. DEFINITION. 

i < r  

E~(A) is the filter on ~)=~(A) generated by the sets 

Ai'A, CA,  Iail <x,F((A~: j  < i))CA~+~ 
J 

where F :  ':>[~<,:(A)]--'P<,c(A) (we use x regular > R0. 

3.6. THEOREM [(Shelah) Ax II(a), III, IVa+, VI, VII]. Suppose IA [ = 2, 2 is 
singular > X, 2 = Y-i<¢fa 2i, 2, increasing continuous. Then A/B is free for F iff 

;t.+ 
A/B is 2-free iff, for every i, ( X ~  ~ + ( A ) "  X/B free} ~ ~ mod E~'+(A). 

3.7. REMARK. The theorem was proved with more axioms (I*, V) in [Sh 
1], then the author eliminates I* and this is represented in [BD]. Later (see 
[Sh 2]) the author found a simpler proof and both new parts avoid Ax V. 
Hodges includes in [HI a representation of this proof in a different, but 
equivalent, axiomatic treatment. Lately we note that Ax III is not needed. 

Section 4 

4.1. DEFINITION. USC=l~ *. F~¢=((B ,A) 'B  +A =A (9 (~(n.i)~j(tn) g} 
(equivalently: B + A/A is the sum of cyclic p-groups). 

Really we should have written 

F s c = { ( X , Y ) ' ( X U  Y ) g = ( Y ) g +  ~ (tT)'} 
(n,i)~J 

but as we have only countably many functions in U ~¢, this has no consequence. 

4.2. DEFINITION. U sp = B*. 

REMARK. If 
(,4 + B ) O Nt. 

F sp -- { (B ,A) : (B ,A)  is st. psf.}. 

A , B E N t ,  Nt < (H(x), E) then A + B AN~=A + 

4.3. LEMMA. (1) F "c satisfies Ax I**, II, III, IV, VI, VII. 
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(2) I f  A/BqEF ~, I(A UB)g / (B) I  g is countable, then there is x E ( A )  g, 
x + B divisible by p"for every n, equivalently x ~B]t+s. 

PROOF. Probably well known (anyhow, it is true). 

4.4. FACT. (1) F 'p satisfies Ax II. 
(2) If Ai (i <a)  is increasing continuous, A i ___spAi+t, (Ai),][ C_Ai+t then 

A0 __. ~p A~. 

Section 5. ;t-sets and ;t-systems 

5.1. DEFINITION. (1) For a regular uncountable cardinal ;t ( > R0) we call S 
a ;t-set if: 

(a) S is a set of  strictly decreasing sequences of ordinals < ;t. 
(b) S is closed under initial segments and is non-empty. 

(c) for rl E S, i f  W( rl , S) dec { i " rl ̂  ( i ) ~ S } is non-empty then it is a station- 

ary subset of ;t(r/, S) d~f Sup W(r/, S) and ;t(r/, S) is a regular uncountable 
cardinal. Also 2(( ), S) = ft. 

We sometimes allow ;t = 0, then the only ;t-set is { ~ ) }. 
(2) For a ;t-set S, let Sf ( = s e t  of final elements of S} be 

{~/E S : ( V  i ) r /^ ( i )~  S} and Si ( =  set of  initial elements of  S} be S -  Sf (so 
S f=  { r /ES:  2(~/, S ) =  0}). Let k(S) be lg(n) for 1/~SF if all r /ESf have the 
same length. 

(3) We call S a (2, x)-set i f S  is a ;t-set and 2(r/, S) > x for r/ESi. 
(4) For ;t-sets S ~, S 2 we say S t -< S 2 (S t a sub-;t-set of S 2) if S t _ S 2 and 

;t(t/, S t) = ),(t/, S 2) for every y /~S 1 (so Si t = S t r3 $2). Clearly < is transitive. 
(5) We say that "for almost every t? ~S[~IUSr]P.. ."  iff for every S ' <  S 

some r/ES'[r/ESfq satisfies P. 
(6) For r /=  (a0 . . . .  , am) let r/+ = (a~ . . . .  am-t ,  a , , +  1). 

5.1A. NOTATION. In this section S will be used to denote 2-sets. 

5. lB. REMARK. Sometimes we can change (a) to "2(t / t  l, S) > ;t(r/r m, S) 
for l < m < lg(r/)", but we found it less useful. 

5.2. CLAIM. (1)Sisa2-se t ,  r/~Si, t henS  t"] de_f {V" ~I^vES} isa2(t?, S)-set 

and ;t(v, S t"l) = 2(~/^v, S). 

(2) If;t > R0 is regular, W c_ ;t is a stationary set and for each t~E W, SJis a 
;t6-set where ;t6 is a cardinal _-<~ (possibly 26 = 0 ,  S ~ = { (  )}) then 
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s d : f { (  ) } U { ( O ) ^ r l : r l e S  ~ and 5 e W }  is a k-set. In this case 

4((6) ^r/, S) = X(r/, S 6) for 5 ~  W, r / ~ S  ~. 

5.3. CLAIM. ( 1 ) If S is a X-set,. X (r/, S) > x for every r/E Si (holds always for 
x = R0) and G is a function from Sfto x, then for some S t < S the  function G is 
constant on S~. 

(2) If S is a k-set, x a regular cardinal (V~/~S)(X(~/, S) :#  x) and G is a 
function from S to x,  then for some S l < S  and 7 < x  for every r / ~ S  ~, 

G(t/) < 7. 
(3) If h is a function from Sf to a set K of regular cardinals and 

(VrlESf)Al<~(, ) (X(r l I l ,  S ) ÷ h ( r l ) ,  and G is a function with domain 
Sf, G(rl) < h (rl), then for some S'  _-_- S, there are ordinals a~ < x for x ~ K, such 

that for r/ES(, G(r/) < ah(,). 
(4) If h is a function from Sf to ordinals, S a k-set, then there are a k-set 

S '  -<_ S and k, m, h such that 
(i) for every r/ES~, l(~l) = k; 
(ii) if r/, vES t ,  rl I m = v i m then h(r/) = h(v); 
(iii) if r / t m  , v t m ,  r l~Sf ,  v ~ S r  but r / I l = v  t / f o r  l < m ,  then h ( r l )÷  

h(v); moreover (if m > 0) 

r/(m - 1 ) < v ( m  - 1)¢:*h(rl)<h(v).  

(5) For a given X-set S and property P the following are equivalent: 
(a) for almost every r /ES,  P(r/); 
(b) there are closed unbounded sets C, of X(q,S) such 

(V r/ES)[ht<t(.) ~/(l) ~ C. l l -"  PO/)]- 

that 

5.4. DEFINITION. (1) A X-system is ~ = (B,: r/~S~) where: 

(a) S is a X-set, and we let Sc = corn(S) d,~ {~/^(i). r /~Si,  i < X(r/, S)}, 
(b) B~^<o ___ B~^u> when ~/ES~, i < j  are < X(r/, S), 
(c) i f5  is a limit ordinal < X(r/, S) then B,^(6> = U(B,t^(i ) ; i < 5 } ,  

(d))B,^<i>l < 2(r/, S) for i < X(r/, 5). 

Note: rl E S c ~  tl + ~S~. 

Section 6 

6.1. DEFINITION. Assume A , B , A  + B  C p, B* we say that ~ =  (B,:  r /~ 
So) is a X-witness for (A, B) if: 

(a) X is regular uncountable or X = 0, 
(b) S is a k-set, 
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(c) (B~" r/ES~) a A-system and let B~ > = B and for r/ES~, B, _ A, 

(d) (UI.,~8~,)B,,) g is a pure subgroup o fA + B, 

(e) (B. n Ut<~c,)B, rt) 8 a pure subgroup ofB~ (eq. of  (Ul<i(q)B,itt)8), 

( f)  for r /ESr  there is x,~ E B , .  x ,  ~ (Ut=~gt,,)B,~r~) ~ + (A + B)[p] ,  (equiva- 

lently, px~ ~ ( Ut  B, tt) ~, x~ E (Ut_<~,) B~tt) d. 

6.2. L~MNA. Suppose  A ,  B ,  A + B are pure  subgroups o f  B*.  I f  there is a 

A-witness ~ = (B ,"  q ~S~) )  f o r  (A,  B )  then (A,  B ) q ~ F  ~. 

PROOF. Suppose (A, B ) ~ F  ~p, let # be regular large enough, x ~ H ( # ) .  We 

choose by induction on l r / /~S and Nt s.t. (letting B< >+ = B + A): 

(1) r/0= ( ) , l g (q~)= l , r /~=r / t+~[ l ;  

(2) x ~ N t  < (HOt ) ,  ~ ) ,  N o , . . .  , N t E N t + I ;  

(3) Nt n A(r/t, S) is an ordinal at, r/t+~ = rh ̂  (at) ~ S .  

There is no problem to do this. 

So for some k < 0, r/k ~ Sf. We prove, by induction on l = 0, . . . ,  k, 

(*) (a) (B U Ui<=t(N, NA))~_CprA + B ,  

(b) (B U Ui<t (N ,  N A ) ) ~ n  (B~oU . . .  UB._,  U B(~,+)) ~ 

= ( B , ~  U • • • U B ~ , _ ,  U B ~ , )  ~. 

For (,) (a), use 1.4(1). For (,) (b), look at (3) above)  For l = k ,  we get 

(as px~  ~B(~;)  - ( U~<=k B~,,) ~ that  

px ~  qi (B,o U • • • U B~, ) ~. 

On the other hand: 

x ~  B U  U B,~ =(B~oU " ' '  UB~, )c t~_  B U  U (N~NA) 
I<k l<k  

So x,  show that 

B u  U 
I < k  

(A N N/)) g ~,p A + B. 

tWe prove by induction on 1. For 1 = 0, check. Suppose x E (B U U~<z(N~ N A))~ and x E 
( B ~  U • • • U B~,_ ~ U Bt¢ )) ~. So for some y E B, xt ~ N~ fl A we have x = y + Z x~. As 

x ~ (B~ U • • • U B,I~_ l U B~?)) g C_ (B,~ U • • • U B,I,_ t U Bc,fL,)) g 

hence for some zo~Nt N B,~ . . . . .  zt_lENt tq B(~_ o, (t~Nt N B~_,j. xt = E z,. Now x = Z x; 
where x; = x, + z, if i < 1. x; = zt. However Nt n Bc,~_,) = B~ so xIEB~,. As 1 > 0 we can use the 
induction hypothesis on l for x - x[. 
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Hence this shows (A, B) is not st. psf. 

Section 7 

7.1. CLAIM. Suppose (A, B) ~ F ~, B C_. pr A _ p~/~* then there is At, B c__ At, 

At[P] =ALP]  and (A, B) has a witness. 

PROOF. As (A, B ) ~ F  ~, by 4.3 and [Sh 2] there is (B,:  r/ESc) s.t. 
(a) 2 = 0 or it a regular uncountable cardinal, 
(b) S is a 2-set, 
(c) (B~ : r/~S~) is a it-system, we let B< > = B and B, _c A, 

(d) ([-3t<l~) B~t~) g C_~rA, 
(e) B. n (Ut<~s~,) B.~) ~ Ct,~ B., (U~.qg~,) B.r~) ~, 
(f) for r /~Sf  there is x,~ ~B,~+, x,~ $ (~.Jt<_lg(q) B, tt)g, xq ~ (I,-)t<lg(q) B~ It)c~. 
Let D, -- B~[ p]. Easily (by (e)): 

(,)  B~t ~ [ p ] =  [.3 D~t . 
1 t/) / <lg(t/) 

We now define E, for r/~Sc by induction (with the order: inclusion on 

U lZlst, B, tt) s.t. (letting E< > = B) 

(h) ( Ul.~,g~,lE~tl)s___p~B *, 
(B) ( I,.Jt<tgol) E,~t)g[p] = (I,..Jt<tg~,7)D,l~t) s, 
(C) (E, : q E So) will be a it-system (set E< > = D< >), 
(D) if rl E S¢ then E,+/(t,.Jt<~s~,) E,m) s has an element x of height infinite and 

order p2. 
In limit stages and in the first stage, there are no problems. Dealing with 

v successor necessarily v = r/+, r /o f  maximal length. Defining B,+, if v/~ S 
use 2.10. If r l ~ S  t w.l.o.g, px,  E (  Ul<tg<,)B, tt) ~ so by purity there is x~E 
B~ f3 ( 1,3 t z ls~.) B, tt ) s, px~ = px,  so w.l.o.g, px, = 0 hence x~ ~ D,÷. So for some 
t. ~ ([,3t<~,) Bqtt) 8, ht(x¢ - Z,,<, t,,) ->_ n, so w.l.o.g, ptm = 0 SO ht(t,,) => m. 

Now when E, t t (l =< l(r/)) are defined, choose s. ~ ( I,.Jt ~ ts<,~ E,  i i ) 8, p,s .  = t., 
and let B~÷ = (X, ~,. p " - ' s ,  : m < to) 8 and complete as before (using 2.10). 

7.2. CONCLUSION. If2 = mini p"G I, G _Cpr B* is not the sum ofcyclics, G 
is not torsion complete and even for no A __.p, G, IA I < i t ,  is ~/Ad,~ is torsion 
complete, then there is H c_p~ B*, HI p] = G[ p], H, G are not isomorphic. 

PROOF. By 2.7, there is Ht, Ht[p] = G[p], Ht cprB*,  (Ht, ( 0 } ) ~ F  ~p. 
By 7.1, there is / /2 ___pr B*, H2[p] -- H[p] ,  112 has a witness. 
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By 6.2, (//2, { 0 } ) $ P  p together Hi, //2 are not isomorphic so G is not 

isomorphic to Hi or to H2 (or to both). 

Part B 

Section 8 

8.1. LEMMA. Suppose G C_p~B*, A,<o,[2,(G)<=A*(G)], 2 * ( G ) < [ G I ,  

moreover 2 ~'(G) < 2 tGi and G ~ G ~. Then Conclusion 7.2 holds (we really have 
2 IGI non-isomorphic ones). 

PROOF. We can find x* E G Ct - G, hence x* ~ G Ct - G, x * ,  0 = px*. Let 

{t~: i < 2,(G),  n < to) be a basis o f G  (p"+lt7 = 0 ~ p"t'I). Let Go = (t/": i < 

2,(G),  n < to)g. 

Let {s , : i< i ( . ) }  be a maximal subset o f  G[p 2] s.t. X , e : ~ G [ p ] + G o  
implies e:~ E G[ p] + Go (for each i). Clearly ] i ( . ) l  = ] G I. 

For T _ {i: i < i( .)},  let 

j si, i q~ T, 
S, T | 

ts~ + x*, iET;  

def 
Ar = C0[P 2] + GtP] + (s,r'c < i ( . ) )  g. 

As in 2.9, there is Hr Epr/~*, Hr[P 2] = AT hence Hr[P] = G[p]. 
It suffices to prove that no (2 a'(G)) + of  the groups HT are isomorphic.  

Suppose {Hr, : i < (2 a'(C)) +} are isomorphic,  T~ 4: T~ for i ÷ j .  Let h~:Hr,--" 
Hro be an isomorphism. For some i , j ,  h, r G[p2]=hjtGo[p2]. So 

h i- th~ : Hr, ~ Hrj is the identity on Go[ p2]. Choose 7 E T~ ----- 7 $ Tj. Now sf, is 

necessarily sent to itself being the limit o f  a to-sequence from Go[ p2]. But 

s r, - sf, ~ x r which is not in Hr,, a contradiction.  

8.2. LEMMA. Suppose G C_pr B*, (G, { 0 } ) $ F  ~, 2 = Min,  ] p"G I, B Ev~ G, 
I B I < 2, G/B~ is torsion complete of power )~, then there is H E p, B*, H[ p] = 
G[ p], H ~ G provided G.C.H. holds (or at least [/~ < 2 =* 2 u < 2]). 

PROOF. Let 3. = [p"(')G l, so for some G~, G~, G = Gt • G2, p"(')G2 = 0, 

[ G,I = 2, w.l.o.g. B c_ p~ Gl, ]B [ < 2, G/B~ torsion complete.  

As G is not torsion complete  there is x E B  d -  G, hence x * ~ B d - G ,  
px* = 0 4~ x*. Let {t~' : n < to, i < ~, } be a basis o f  G (t~' o f  order  p" + ~) where 

{t:: n < to, i < ~,} is a basis o f  B. 
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We can find infinite v c_ to s.t. ( I ~ . -  (. I: n E v) is non-decreasing, 

r l . ~ , l ~ . - ( , I - - 2 ,  v = {nt: l < to}, ni <n~+l, n(l)= nt. Let xt = I~.,- G.,I. 
and let h. : lIt<=, xt -* {i" (.(t) < i < ~.(t)} be one to one. For q ElIt<,,, xt let 

n>ra 
n < Ig(n) 

For some s o E(B)~ 

z ° = y;" + s o o .  

Let {x~" i < i(,)} c G[p]  be s.t. {z °" q El-ll<,o x~} U {xr '?  < 7(.)} is a basis of 
G[p]lB[p] (9 1~(.,o (tr)*. 

Let SoT = Z(.,oewoat~,.i)P"tP, w, c {(n, i)" i < ~ , ,  n < to} ,  w.l.o.g, x* = 
Z c.p"tg. For S c_ rl~<,o ~ let Hs be generated by 

.utah+ t (n,i)Ewo 

+ Y, a(".a) p"-mt~ + Y. 
(n, i )E w. n >_ rn 

. ~ r a  
c.p"-"t~" m<totlqE l_l ] 

U { Y~ b~..i)p"-"tr : m < to, y < y(.)} 
n > ' r a  
(.,i) 

/ I - - m  . where x r = Y b/',.~) p t~. 
For every S this is o.k. 

Case a: 2 l a l = 2  
In this case 

8.2A. FACT. We can find (g~: qEr l ,<o,x , ) ,  g~ a function from B U 
{tg/~)f.):n < t o }  into g such that for every function g : B  U 
{ th"t(,t{ • v E U.<,o 1-I~<. xl} into G for some q ~ 1-1t<,o xt, g~ __. g. 

Pfi Like [Sh 3, VIII, 2.6]. 
Now we can choose S as follows: for each r/~l-lt<~, xt, the truth value of  

" t /E  S" is determined such that no isomorphism from Hs onto G extending g~ 
exists. This is easily done, and clearly sutficient. 
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Case fl: 2 strong limit singular. Necessarily cf3. > Ro. We use [Sh 4, 2.5] 
and do the obvious things. 

8.2A. REMARK. We may be tempted to use in case (a) 3. = 3.~0 (instead of 
3. --3.<a), but by [Mk-Sh] 5.3 this is problematic. 

8.3. REMARK. If3. is regular, {c~ <3. : cf~ = R0} is not "small" (for defini- 
tion and references see [G-S]), we can get the result. 

If  3. is singular, I B I < g < x < 3. < 2 ~', {c~ < x : cf g = to } not small, we can 
still get the result (see [Sh 5, XIV, §1]). 

8.4. FACT. We can weaken the hypothesis in 8.1: G _cp, B* is not the sum 
of  cyclics and is not torsion complete, 3.=Min~<o, lp~Gl>3.*(G), 
{t/': n <co ,  i < ~ , }  _ G, a base, 

x. <r,,+~ < t o  for n < t o ,  

hn:l-l~<~xt~¢~ one to one, 
Z a?p't?, 

K n ~_~ K'n+ 1 ~_~ 3.*(a), 

and for r/~l'l~<o,x~ there is x ~ G [ p ] ,  x~ = 

{tn : af pntn ~ 0} f~ {t~(v) " Y~ H Kl, n ~ (~)t C. {t~m(qtn) " n ~ (.o } 
l<n 

and is infinite. 

PROOF. The same proof essentially as 8.2 (really {tr:a?pntr ~ 0 }  A 
{tg.(~ln) : n < to} is infinite, r~ > R0 suffice). 

8.5. CONCLUSION. (1) (G.C.H.) If G __C_pr B* is not s.c. nor torsion com- 
plete, then there is H c_,~B*, Hip] = G[p] ,  H, G not isomorphic. 

(2) Instead of G.C.H., "(V3.) (~ <,1. + :cf3. = R0} is not small" is enough. 

PROOF. (1) W.l.o.g. 3.,(G) < 3.*(G) for each n. [Two possibilities: 
(A) all non-isomorphism pfwork  if we say not "isomorphic even if we add a 

bound p-group". 

(B) 3 n( , ) ,  V n > n( , ) ,  3.,(G) < 3.* and makep'( ' )G,  p"")Hnon-isomorphic.  
Now the proof  is just using 7.2, 8.1, 8.2 - -  they cover all cases.] 

(2) For this observe 

(A) I fMin ,  I p"GI > g  > Mins Z~>s3.~(G),gregular, then there i s H  --d G, 
I p~HI ~g ,  Minm(Zn>m3.,(H)) has confinality to [prove by induction on 
Minm(Z~>s 3..(H))]. 
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def 
(B) The proof of 8.1 gives: if /t = Min~lp"G[,  Hc_c~G, 
def 

x = Minm(Z~>,~ 2~(H)),/1~< 2tul, then the conclusion of 7.2 holds (we get 
really 2 inl non-isomorphic ones). 

REMARK. We cannot just omit G C H by [Mk-SH] §6. 

Section 9 

9.1. REMARK. An alternative definition o f " H  is direct" is: if B* ~H(/~), 
Nt < (H(II), ~), Al<mNt~Nm then ( t,.Jl<k(N t ¢3 H))~ CprH (similarly for 
"(H, H0 is direct"). 

9.2. THEOREM. If G.C.H., G CprB*, 2 is regular, 
(VK)[K _c G ^ IKI <~ . - - 'G /K not sum of cyclic], G not torsion complete, 
then there are > 2 ~ pairwise non-isomorphic groups H, H C_prB*, H[p] = 
G[p]. 

REMARK. (1) Under V = L we can get rid of"2 regular". We should correct 
case (B) as in 8.2's proof. It is enough that {J < 2  + : c f J  = 09} is not small for 
every 2. 

(2) By 9.2 and compactness for singular, if in 9.2 2 is singular, the number 
is >~>2. 

PROOF. W.l.o.g. I G I = Minn<,o I PnGI. Clearly there is G1 ---pr G, I GII > 
2, ( V K)[K c_ G~ ̂  I K I < I G~ I =* G~/K not sum of cyclic]. 

da 
By applying suitably compactness for singular, we get/z = I G~I _< I G I is a 

regular cardinal. 

Case A: For some H ---¢1 G, Jill  < I GI,  G/H is torsion complete and of 
power I G I. 

The desired conclusion follows by [Sh 4] and the proof of 8.2. 

CaseB: For s o m e  H__.pr G, I H I < I G I ,  I ( H ) g l - - I G I  or even just 
IHI < t(H)~ I -<- IGI ~ 2 LH~. Then use the proof of 8.5(2) (or 8.1). 

Let 2 d¢_f Min{ I KI:  G/Kis sum of cyclic, K _Cpr G}. So if^ is not strong limit 
singular, we can assume that 2 u > 2. 

Case C: Not case A, not case B. 

OBSERVATION. W.l.o.g. K ___ G ^ I KI </~ = '  I (K)~ I < / t .  
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Really "==, t (K)~ I < / t "  suffices, and this follows by GCH. For trying to 
weaken the assumption GCH, note the following. If 2 u > 2, as not case B, 
KCp, GA IKI < / t ~  I(K)~ I =,~, so w.l.o.g. GI ___~lG 

If 2 is strong limit singular /t~ d~f (2 u) + < 2 and 

[Kcp~GAIKI < / t t = * l ( K ) ~ l < 2 ] .  So if for some G2C_o,G, IG21=/tt, 
(VK)[KC__~G2^ IKI <a---'G2/K not sum of cyclic], we finish. Otherwise 
there is a minimal/t2 >/ t ,  

G3CprG, IG31 =/t2, (VK)[K C-prG3A IKI </t2--'G/Knotsum of cyclic]. 

By 1 .x/t2 is regular, and easily [K C_ p~ G A I K I </t2 ==' t (K)~ I </t2], so we can 
use/t2 instead/t. 

If ;t is not strong limit we have assumed 2 u < 2, and by not case B, 

[K C_ G ^ I KI = </1 ==' I(g)~ I -5-/1]. Trying to replace/t by/t2 d~f=/t + we succeed 
in the previous case except when /t = 2. By then "not case B" gives the 
conclusion. 

OBSERVATION. W.l.o.g. if/t < IG I" (i) (VK -----pr G0[IKI < / t  ~G~/(K)~ is 
not torsion complete] and (ii) G~ ___~ G. 

PROOF OF THE OBSERVATION. Define by induction on ( _-<-/t, G~, s.t. 

(a) G~C_G, IG:I ___</t, 
(b) G( is increasing continuous (in (), 
(c) G o = G~ is not s.c. (hence Gt will not be), 
(d) G~ c+~ -/,-z.3c~, 

- -  ~ , V l  I G ,  

(e) G 3~+2 C_p~G, 
(f) G~ ~+3 C_pr G, G~+3/G~ ~+2 is not bounded. 

Note: G~ _ p, G~. Now replace G~ by G~ u. 

OBSERVATION. W.l.o.g. /t = I GI=~G~ = G, hence (i), (ii) alone hold by 
7 case A, -1 case B (so (i), (ii) always hold). 

Let (B~: q ~Sc) be a/t-system satisfying (a)-(f) from the proof of 7.1 with 
B = B <  >={0},B< >= U~< uB<~>=Gland 

(g) U{B~<i) : i < 2, (q, S)} C_ B,+, 

(h) G/B<,,> is ,;t(<a), S) - FS¢-free, B<~+~> _c¢~ G. By [Sh 2] w.l.o.g, there is 
m( . )  s.t. for every q ~Sf, ciIq(0)] = 2(q t m( . ) ,  S). 

Let {t/' : n < to, i < / t  } be a basis of G~, and w.l.o.g, for a E W(( ), S), a is 
divisible by lal and {t,": n < t o ,  i < a }  is a basis of B< ), and there are 
U~ _ {t~" : n < to, i <U} for q E S  s.t. U, is a basis ofB~/Ut<~g(~) B~rt. Now for 
each ~ W * = { a < / t : a E W ( <  ) ,S),  a = s u p a O  W(( >,S)} choose a 
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closed unbounded C~ _ t~ n W(( ), S) of  order type cf ~. We can assume that 

(a)W* is a set of  inacessible, 2 ( ( ~ ) , S ) = ~  or ( f l )J~W*=*cfJ=x~,  
(x. < 4 ( ( ) ,  s)), ,l((a), s )  = x2. 

In case (a) we know (~ ~ W* : W* O ~ is not stationary in ~} is stationary so 

w.l.o.g. (.) for ~ ~ IF*, IF* n ~ is not stationary in ~, hence w.l.o.g, each C6 is 
disjoint to W*. 

We shall define for every W ___ W* a group H w CprB*, HW[p] = G[p] s.t.: 

(Da - -  the club filter) W~ # W2 mod Da implies H w' m H w~. 

We now define E ~  for r/E Sc as in the proof of 7.1 but 

i f a ~  W, we define E{W+t) as in the proof of 2.7, 

i f a E  W, we want to define E~V((a) E ~1ES) as in the proof of 7.1, however 

we have a problem wanting to reconstruct W/D, from H w. We do not want 

that what we do for (a) will spoil what we have done for any fl < a, fl ~ W. 
Assume first that m( . )  = 1; w.l.o.g. 

(***) for every a {tF:n <09, i<7~} is a basis ofB~, 7~+y~<7~+1; for 

every i: 

( t ; : j  < i ,  n < to}q. + ( t f+ t : j<n ,  l < to)g~(t j ' : j  < i  + to, n < t o ) ~  

and say z, witness it, pz, = O. 
Now building E¢W) ̂ , we make them direct over B{,), but we use z~ essentially 

like in 2.7. 
The case m( . )  > 1 is more complicated - -  we should imitate [Sh 2]. 
Completing the definition o f H  W after (E,W; 17 ~S}  was defined, is as in 2.7. 
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